Quality-Adjusted Labour Input in ASEAN and Sub-national Economies of China, India and Indonesia

EDITORS

FILAK ABEYSINGHE

NUS National University of Singapore

ZHANG XUYAO

ASIA COMPETITIVENESS INSTITUTE

Quality-Adjusted Labour Input in ASEAN and Sub-national Economies of China, India and Indonesia

If you would like to request for an e-copy of the whole book, please drop us an email at <u>aci@nus.edu.sg</u>

Published by

Asia Competitiveness Institute, Lee Kuan Yew School of Public Policy, National University of Singapore

18 Evans Road, Singapore 259364

Quality-Adjusted Labour Input in ASEAN and Sub-national Economies of China, India and Indonesia

Copyright © 2020 by Asia Competitiveness Institute, Lee Kuan Yew School of Public Policy, National University of Singapore

All rights reserved. This book, or parts thereof, may not be reproduced or modified in any form, including photocopying, recording or any information storage and retrieval system now known or to be invented, without written permission from the publisher.

e-ISBN 978-981-14-9536-6

Desk Editor: DW HQ Pte Ltd Typeset by DW HQ Pte Ltd Email: hello@dwhq.com.sg

ASIA COMPETITIVENESS INSTITUTE

About ACI

The Asia Competitiveness Institute (ACI) was established in August 2006 as a Research Centre at the Lee Kuan Yew School of Public Policy (LKYSPP), National University of Singapore (NUS). It aims to build the intellectual leadership and network for understanding and developing competitiveness in the Asia region. ACI seeks to contribute to the enhancement of inclusive growth, living standards, and institutional governance through competitiveness research on sub-national economies in Asia. It identifies mitigating issues and challenges for potential public policy interventions through close collaboration with regional governments, business corporations, policy think-tanks, and academics. ACI's three key research pillars include (I) Sub-national economies level competitiveness analysis; (II) The development of digital economy and its implications in 16 Asia economies; and (III) Singapore's long-term growth strategies and public policy analysis.

ACI's value propositions may be encapsulated in its acronym:

Analytical inputs to initiate policies for policy-makers and business leaders in Asia

Capacity building to enable others through improvement in productivity and efficiency Intellectual leadership to create pragmatic models of competitiveness and inclusive growth

Vision and Mission

- ACI's over-arching vision is to build up its research credibility with policy impact, contributing as a professional, world-class think-tank.
- ACI's mission is to establish our niche as a leading policy think-tank by identifying development trends, opportunities, and challenges among Asian economies and business corporations.
- ACI endeavours to articulate sound recommendations, promote discussion, and shape research agenda in the arena of public policy amongst Asian governments.
- ACI undertakes evidence-based analysis of public policy issues and decisions, in order to provide assessment of their effectiveness as well as economic and societal impact.

Contents

Quality-Adjusted Labour Input in ASEAN and Sub-national Economies of China, India and Indonesia

Prefac	ce	iii
Ackno	weldgements	<i>v</i>
Aboul	The Authors	vii
List of	List of Abbreviations	
Lisi 0j	Figures and Tables	X
Chap Tilak	ter 1 Introduction Abeysinghe	1
11	Labour Productivity and Per Capita Income	1
1.2	Labour Productivity in the Digital Economy	2
1.3	Labour Productivity and Labour Ouality	3
1.4	Contribution of Quality Labour to Growth	4
1.5	Chapter Summary	4
Refere	ences	8
Chap Tilak	ter 2 Literature Review and Research Methodology Abeysinghe, Aishwarya Narayan and Zhang Xuyao	9
2.1	General Literature Review on Labour Productivity	9
2.2	Methodology	11
Refer	ences	13
Chap Tan K	ter 3 Labour Quality in ASEAN <i>Tway Guan</i>	15
3.1	Introduction	15
3.2	Literature Review	16
	3.2.1 Sectoral Trends of Labour Productivity	16
	3.2.2 Drivers of Labour Productivity	17
	3.2.2.1 ICT	17
	3.2.2.2 Financial and Legal Institutions	18
	3.2.2.3 Investment in Human Capital	18
3.3	Trends and Patterns in Composition of Output, Employment and Employee Earnings in	19
	ASEAN Economies	
	3.3.1 Overview of Regional Trends and Patterns in Output, and Employment in ASEAN	19
	3.3.2 Profiles of ASEAN Economies	23
	3.3.3 Remarks on ASEAN Trends and Patterns	48
3.4	QALI: Data Caveats and Results	49
	3.4.1 Indonesia	50
	3.4.2 Malaysia	53
	3.4.3 The Philippines	57
	3.4.4 Singapore	61
	3.4.5 Thailand	64
3.5	Conclusion	66
Refer	ences	67
Anney	xA	70

Cha Mao	pter 4 Labour Quality in Urban Enterprises in Mainland China Provinces Ke and Zhang Xuyao	71
4.1	Introduction	71
	4.1.1 China's Labour Market Development	71
	4.1.2 Issues about China's Labour Quality	72
4.2	Trends and Patterns of Employment and Wage in Mainland China Provinces	74
	4.2.1 Overview	74
	4.2.2 Employment and Wage Trends by Province	82
	4.2.3 Employment and Wage Trends by Industry	87
4.3	China-specific Literature Review	90
4.4	Data Description	91
4.5	Empirical Results	92
	4.5.1 Labour Quality Assessment for Urban Private Enterprises	92
	4.5.2 Labour Quality Assessment for Urban Non-private Enterprises	93
	4.5.3 Labour Contribution to GRDP Growth	95
	4.5.4 Two Cases: Hebei and Chongqing	97
4.6	Conclusion	99
Refe	rences	100
Cha Sum	pter 5 Labour Quality in India's Sub-national Economies edha Gupta	103
5.1	Introduction and Motivation	103
5.2	Trends and Patterns of Employment in India	104
	5.2.1 Overview of National Level Trends	104
	5.2.2 Overview of Sub-national Level Trends	105
5.3	Literature Review	111
	5.3.1 India Specific Literature – National Level Studies	111
	5.3.2 India Specific Literature – Sub-national Level Studies	112
5.4	Data Description	112
5.5	Empirical Results	114
	5.5.1 National Level Results	114
	5.5.2 Sub-national Level Results	117
5.6	Concluding Remarks and Policy Implications	130
Refe	rences	131
Cha Dori	pter 6 Labour Quality of Indonesia's Sub-national Economies	133
6.1	Introduction	133
6.2	Trends and Patterns on Employment and Wages	134
	6.2.1 Overview of Employment and Wages	134
	6.2.2 Trends and Patterns of Employment and Wages by Sector in the Six Regions	135
6.3	Empirical Literature on Indonesia's Sub-national Economies	147
6.4	Data Description	148
6.5	Empirical Results	149
	6.5.1 Quality-Adjusted Labour	149
	6.5.2 Labour Share	162
	6.5.3 Contribution to GRDP Growth from Quality-Adjusted and Unadjusted Labour	163
6.6	Policy Implications and Concluding Notes	166
Refe	rences	167

Appendix	Discussant Notes
----------	-------------------------

171

Preface

The labour force, as a heterogeneous population with varying attributes, is continuously evolving. Over the past few decades, more women are joining the labour force. With the delay in retirement, more older workers are staying employed. Rapidly changing technology has changed the skill set and skill requirements of the workers. These changes would have a definite impact on the overall labour productivity of an economy. The traditional measure of labour productivity, calculated by GDP over total employment, has been criticised for failing to capture the subtle changes in the labour force, especially the varying capability of different types of labour in total employment.

In this context, Asia Competitiveness Institute (ACI) at Lee Kuan Yew School of Public Policy (LKYSPP), National University of Singapore (NUS) conducted this study to analyse the quality of labour inputs and its contribution to GDP growth. The heterogeneity of labour is considered through different industrial classifications. Following a well-established methodology, wages are used to capture labour productivity differences across industries. The wage-share weighted labour input provides quality-adjusted labour input. Naturally, the higher the growth of labour quality, the higher its contribution to GDP growth.

A notable feature of this book is its coverage of both the national (ASEAN countries) and sub-national levels (China, India and Indonesia). The ASEAN countries, including the provinces of Indonesia, have experienced a transition of the labour force, reflecting the shift from agricultural industries to manufacturing industries, due to increasing education levels. However, this does not seem to be the case in the provinces of China and the states of India. Labour mobility across industries at the sub-national level in these countries seems to be very low. This raises the question of whether increasing education levels translate into higher labour productivity growth.

In the midst of the COVID-19 pandemic, more workers have been retrenched from their current jobs. It is important to understand the quality of labour, as well as its ability to shift to other industries. This publication hopes to provide readers with a better understanding of the quality-adjusted labour input for ASEAN countries, and the sub-national economies of China, India and Indonesia. We look forward to the continued discussion on this important topic.

Paul Cheung

Director, Asia Competitiveness Institute Lee Kuan Yew School of Public Policy National University of Singapore

Acknowledgements

The project on *Quality-adjusted Labour Input in ASEAN, China and India* was supervised by Professor Tilak Abeysinghe and led by Dr Zhang Xuyao with the support of the team members Sumedha Gupta, Doris Liew Wan Yin, Mao Ke, Aishwarya Narayan, and Tan Kway Guan. The project was initially facilitated by former Co-Director of ACI, Professor Tan Khee Giap.

This book has benefitted immensely from two of our annual flagship events: (a) the 2019 Asia Economic Forum on 'Economic Competitiveness and Quality-Adjusted Labour Productivity for ASEAN Economies, Greater China and India' held on 29th and 30th August 2019, and (b) the 2019 World Bank- Asia Competitiveness Institute Annual Conference on 'Urbanization Drive and Quality-Adjusted Labour Contributions to GDP' held on 18th and 19th November 2019. Throughout the project, we received tremendous support from various experts as well as regional policy think tanks. The effort and time taken by the reviewers in discussing our papers presented during these events are much appreciated. Their constructive comments have helped us improve our study significantly.

The reviewers' comments are included in this book as discussant notes. More specifically, our thanks are due to:

Dr Prasetyo Aribowo

Head of the Provincial Government of Central Java Central Planning and Development Agency, Indonesia

Professor Firmansyah Deputy Dean (Academic and Student Affairs), Diponegoro University, Central Java, Indonesia

Professor Han Hanjun

Deputy Director, Institute of Economics, Shanghai Academy of Social Sciences

Professor Lei Xinjun

Senior Researcher, Institute of Economics, Shanghai Academy of Social Sciences

Professor Liu Aimei

Associate Professor, Rural Development Institute, Shandong Academy of Social Sciences

Professor Lu Hsin Chang

Associate Professor, College of Management, National Taiwan University

Professor Ajit Mishra

Director, Institute of Economic Growth, India

Professor Manoj Panda

RBI Chair Professor, Institute of Economic Growth, India

Dr Qian Jin

Assistant Researcher, Economic Research Institute, Shandong Academy of Social Sciences

Dr Mark Roberts

Senior Urban Economist, The World Bank

Professor Shen Kaiyan

Director, Institute of Economics, Shanghai Academy of Social Sciences

Professor Wang Hongxia

Professor, Institute of Economics, Shanghai Academy of Social Sciences

Professor Wang Huitong

Professor, Institute for Finance and Economics Research, Central University of Finance and Economics

Dr Zhan Yubo

Research Associate, Institute of Economics, Shanghai Academy of Social Sciences

This book would not have been possible without the support of our research and administrative colleagues. In particular, we would like to extend our sincere thanks to an able and dedicated administrative team at ACI including Yap Xin Yi, Cai Jiao Tracy, Nurliyana Binte Yusoff and Dewi Jelina Ayu Binte Johari. We would also like to note with great appreciation the contributions from ACI Director Professor Paul Cheung and the research staff Dr Xie Taojun, Dr Bian Xiaochen, Dr Ammu George, Sky Chua Jun Jie, Sunena Gupta, Clarice Handoko, Lee Shu En, Lim Jing Zhi, Zhu Yan, Lucas Shen Yan Shun, Chen Xinke, Poh Wei Tiong, Constance Siew Hui Hui, Vardaan Chawla, Hilda Kurniawati, Dimas Fauzi and Tommy Des Mulianta.

We place on record our appreciation for the encouragement by Professor Danny Quah (Dean), Professor Khong Yuen Foong (Vice Dean, Research and Development), Kadir Suzaina (Vice Dean, Academic Affairs) and other colleagues in the Lee Kuan Yew School of Public Policy, NUS, for making this effort possible.

About the Authors

Tilak Abeysinghe is a Senior Research Adviser in the Asia Competitiveness Institute, National University of Singapore (NUS) and Research Director of the Gamani Corea Foundation, Colombo. He was a Professor in the Department of Economics, NUS. He served as the Director of the Singapore Centre for Applied and Policy Economics and Executive Committee member of the Department. He held other important administrative responsibilities such as Deputy/ Acting Headship, Director of Economics Graduate Program and member of the Faculty Tenure and Promotion Committee. He was also a visiting professor at Kyoto University and Peradeniya University. His research interests lie in a range of theoretical and applied econometric topics that include the Singapore economy, housing affordability, stress and cancer and quantitative health research. He has published in various reputable international journals like Journal of Econometrics and NBER paper series. A major line of his research has been the econometric modelling of the Singapore economy, forecasting and policy analyses. Policy analyses based on these models have appeared in news media frequently. He coordinated the keenly awaited monthly newspaper column in The Straits Times, "Ask NUS economists".

Zhang Xuyao is a Research Fellow at the Asia Competitiveness Institute (ACI) at the Lee Kuan Yew School of Public Policy, National University of Singapore (NUS). Dr Zhang received his PhD in Economics from NUS in 2016 and obtained his Bachelor (Honours) degree in Applied Mathematics from NUS as well in 2012. During the PhD candidature, he worked as teaching assistant in conducting undergraduate tutorials, in subjects such as Microeconomics, Macroeconomics and Managerial Economics. His research focuses on Industrial Organizations, Applied Game Theory, and Public Economics. In particular, he is interested in technology transfers and anti-trust policies. He studies the optimal environmental taxation on the pollution problems in the presence of corruption. He also works on the beneficiary of research joint ventures with technology transfer. He also studies the Qualcomm's anti-trust case in China. At ACI, Dr. Zhang is supervising all the Competitiveness Projects (ASEAN, China, India and Indonesia). He is the coordinator for the Quality-Adjusted Labour Productivity Project, Welfare Spending and Budget Sustainability project and Shandong Urban Composite Development Index project. He is also the co-coordinator for the project studying the impact of exchange rate on trade at the provincial level in Mainland China. Dr Zhang is also working on the methodology of applying the concept of Shapley values to index ranking analysis. This method will subsequently serve as a robustness check to all the competitiveness ranking studies in ACI. Additional projects he is working on include the construction of the Special Economic Development Area index, the construction of Infrastructure index and the Independent Review and Efficiency Monitoring (IREM) of Real Time Outcome Monitoring System (ROMS) for the Government of Andhra Pradesh (GoAP), India.

Sumedha Gupta is working as a Research Associate at Asia Competitiveness Institute at the Lee Kuan Yew School of Public Policy, National University of Singapore (NUS). She graduated from NUS with a Master of Social Sciences (Applied Economics) degree. Prior to this, she had graduated with a First Class Honours degree in Commerce from Shri Ram College of Commerce, New Delhi. She is currently the coordinator for the Annual Competitiveness Analysis of 36 Indian Sub-National Economies. She is actively involved in the study of Impact of COVID-19 on ASEAN-5. She was also the lead coordinator for the Quality-Adjusted Labour Productivity Study for the States and Federal Territories of India and the Productivity Tracking and Efficiency Monitoring of Micro, Small and Medium Enterprises in Uttarakhand. Her research interests include public policy and development economics.

Doris Liew Wan Yin is a Research Assistant at the Asia Competitiveness Institute, Lee Kuan Yew School of Public Policy, National University of Singapore (NUS). Doris graduated from Nanyang Technological University with a Bachelor of Arts (Honours) in Economics with Distinction and a minor in Public Policy and Global Affairs. She is currently the lead coordinator for Annual Competitiveness Rankings and Simulation Studies for Indonesia, Quality-Adjusted Labour Productivity for Indonesia Sub-national Economies and the Indonesia Special Economic Zone Project. She is also involved in the Annual Competitiveness Analysis and Development for ASEAN-10 Economies as well as Quality-Adjusted Labour Productivity for ASEAN Economies. Her research interests include ASEAN economics, environmental economics, international trade and development economics.

Mao Ke is a Research Assistant at Asia Competitiveness Institute (ACI), Lee Kuan Yew School of Public Policy, National University of Singapore (NUS). He graduated from NUS with Bachelor of Business Administration with Honours (Distinction) and specialised in Finance and Operations & Supply Chain Management. At ACI, he works as the coordinator of the project on Annual Competitiveness Analysis for 34 Greater China Economies. He has been involved in several other projects, such as Welfare Spending and Fiscal Sustainability Analysis, Quality-Adjusted Labour Productivity and Independent Review and Efficiency Monitoring (IREM) of Real Time Outcome Monitoring System (ROMS) for the Government of Andhra Pradesh (GoAP), India. His research interests cover the fields of financial economics, macroeconomic policy and development economics.

Aishwarya Narayan is a graduate from the National University of Singapore (NUS) holding a Masters in Applied Economics. Her graduate studies involved intense study of Southeast Asian models of growth and development, and program evaluation methods. She currently works at the Social Protection Initiative at Dvara Research Foundation, based out of Chennai, India. Her research focus lies in improving welfare delivery at the last mile, specifically about the role of private players in welfare delivery chains. In the past, she has worked as a Graduate Research Assistant at the Asia Competitiveness Institute (ACI) at the Lee Kuan Yew School of Public Policy in Singapore, where she conducted extensive macroeconomic research about India. Her research interests include Development Economics, Public Policy, Poverty and Inequality.

Tan Kway Guan is a Research Assistant at the Asia Competitiveness Institute (ACI), Lee Kuan Yew School of Public Policy, National University of Singapore (NUS). Kway Guan graduated from the University of Western Australia with a Master of Economics and a Bachelor of Commerce, double major in Economics. He is currently the project coordinator for the Annual Competitiveness Analysis and Development Strategies for ASEAN-10 Economies. He is also currently involved in research into the economic impact of COVID-19 on Hong Kong, Singapore and Taiwan and on FDI flows into ASEAN. In the course of work with ACI he has also worked on studying the quality-adjusted labour productivity, fiscal sustainability of welfare spending in ASEAN and the Independent Review and Efficiency Monitoring (IREM) of Real Time Outcome Monitoring System (ROMS) for the Government of Andhra Pradesh (GoAP), India. His research interests include development economics, environmental economics and applied econometrics.

List of Abbreviations

ACI	Asia Competitiveness Institute
ADB	Asian Development Bank
ASEAN	Association of Southeast Asian Nations
ASI	Annual Survey of Industries
Bali-Nusra	Bali and Nusa Tenggara
CLMV	Cambodia, Laos, Myanmar and Vietnam
CMIE	Centre for Monitoring Indian Economy
СРІ	Consumer Price Index
СРО	Crude Palm Oil
EUS	Employment and Unemployment Survey
GDP	Gross Domestic Product
GFC	Global Financial Crisis
GRDP	Gross Regional Domestic Product
GSDP	Gross State Domestic Product
GVA	Gross Value Added
ICT	Information and Communications Technology
IMF	International Monetary Fund
ILO	International Labour Organisation
ISIC	International Standard Industrial Classification
IT	Information Technology
KLEMS	Capital, Labour, Energy, Materials and Services
MNC	Multinational Corporation
MSME	Micro, Small and Medium Enterprise
OECD	Organization for Economic Cooperation and Development
PIB	Press Information Bureau
PPP	Purchasing Power Parity
QAI	Quality-Adjusted Index
QALI	Quality-Adjusted Labour Input
RBI	Reserve Bank of India
RMB	Renminbi
SME	Small and Medium-sized Enterprise
TFP	Total Factor Productivity
UI	Unadjusted Index
US	United States
WDI	World Development Indicators

List of Tables and Figures

Figure 1.1	Growth of Per Capita GDP (Percent) and Labour Productivity (GDP / Employment)	1
Figure 1.2	Employment/Population Ratio	2
Chapter 2 Table 2.1	Definitions of Labour Categories	11
Chapter 3		
Figure 3.1	Percentage of GDP by Sector – 2000	20
Figure 3.2	Percentage of GDP by Sector – 2017	20
Figure 3.3	Unemployment Rate (Percent) – Ages 15+	21
Figure 3.4	Sector Share of Total Employment (Percent) – 2000	22
Figure 3.5	Sector Share of Total Employment (Percent) – 2017	22
Figure 3.6	Brunei's GDP by Broad Sector (Constant 2010 US\$), 1993-2017	23
Figure 3.7	Brunei's Employment by Broad Sector (Thousand Persons), 1993-2017	24
Figure 3.8	Cambodia's GDP by Broad Sector (Constant 2010 US\$), 1993-2017	24
Figure 3.9	Cambodia's Employment by Broad Sector (Thousand Persons), 1993 - 2017	25
Figure 3.10	Cambodia's Mean Nominal Monthly Earnings of Employees in Agriculture (Constant 2011 PPP\$) – 2011-2016	25
Figure 3.11	Cambodia's Mean Nominal Monthly Earnings of Employees in Industry (Constant 2011 PPP\$) – 2007-2016	26
Figure 3.12	Cambodia's Mean Nominal Monthly Earnings of Employees in Services (Constant 2011 PPP\$) – 2007-2016	27
Figure 3.13	Indonesia's GDP by Broad Sector (Constant 2010 US\$), 1993-2017	28
Figure 3.14	Indonesia's Employment by Broad Sector (Thousand Persons), 1993-2017	28
Figure 3.15	Indonesia's Mean Nominal Monthly Earnings of Employees in Agriculture (Constant 2011 PPP\$) – 2013-2015	29
Figure 3.16	Indonesia's Mean Nominal Monthly Earnings of Employees in Industry (Constant 2011 PPP\$) – 2013-2015	29
Figure 3.17	Indonesia's Mean Nominal Monthly Earnings of Employees in Services (Constant 2011 PPP\$) – 2013-2015	30
Figure 3.18	Laos' GDP by Broad Sector (Constant 2010 US\$), 2000-2017	31
Figure 3.19	Laos' Employment by Broad Sector (Thousand Persons), 2000-2017	31
Figure 3.20	Malaysia's GDP by Broad Sector (Constant 2010 US\$), 1993-2017	32

Figure 3.21	Malaysia's Employment by Broad Sector (Thousand Persons), 1993-2017	32
Figure 3.22	Malaysia's Mean Nominal Monthly Earnings of Employees in Agriculture (Constant 2011 PPP\$) – 2011-2016	33
Figure 3.23	Malaysia's Mean Nominal Monthly Earnings of Employees in Industry (Constant 2011 PPP\$) – 2011-2016	33
Figure 3.24	Malaysia's Mean Nominal Monthly Earnings of Employees in Services (Constant 2011 PPP\$) – 2011-2016	34
Figure 3.25	Myanmar's GDP by Broad Sector (Constant 2010 US\$), 2010-2017	35
Figure 3.26	Myanmar's Employment by Broad Sector (Thousand Persons), 2010-2017	36
Figure 3.27	Philippines's GDP by Broad Sector (Constant 2010 US\$), 1993-2017	36
Figure 3.28	Philippines's Employment by Broad Sector (Thousand Persons), 1993-2017	37
Figure 3.29	Philippines's Mean Nominal Monthly Earnings of Employees in Agriculture (Constant 2011 PPP\$) – 2006-2016	37
Figure 3.30	Philippines's Mean Nominal Monthly Earnings of Employees in Industry (Constant 2011 PPP\$) – 2006-2016	38
Figure 3.31	Philippines's Mean Nominal Monthly Earnings of Employees in Services (Constant 2011 PPP\$) – 2010-2014	39
Figure 3.32	Singapore's GDP by Broad Sector (Constant 2010 US\$), 1993-2017	40
Figure 3.33	Singapore's Employment by Broad Sector (Thousand Persons), 1993-2017	41
Figure 3.34	Singapore's Mean Nominal Monthly Earnings of Employees in Industry (Constant 2011 PPP\$) – 2011-2016	41
Figure 3.35	Singapore's Mean Nominal Monthly Earnings of Employees in Services (Constant 2011 PPP\$) – 2011-2016	42
Figure 3.36	Thailand's GDP by Broad Sector (Constant 2010 US\$), 1993-2017	43
Figure 3.37	Thailand's Employment by Broad Sector (Thousand Persons), 1993 - 2018	44
Figure 3.38	Thailand's Mean Nominal Monthly Earnings of Employees in Agriculture (Constant 2011 PPP\$) – 2011-2016	45
Figure 3.39	Thailand's Mean Nominal Monthly Earnings of Employees in Industry (Constant 2011 PPP\$) – 2011-2016	45
Figure 3.40	Thailand's Mean Nominal Monthly Earnings of Employees in Services (Constant 2011 PPP\$) – 2011-2016	46
Figure 3.41	Vietnam's GDP by Broad Sector (Constant 2010 US\$), 1993-2017	46
Figure 3.42	Vietnam's Employment by Broad Sector (Thousand Persons), 1993-2017	47
Figure 3.43	Vietnam's Mean Nominal Monthly Earnings of Employees in Agriculture (Constant 2011 PPP\$) – 2007-2016	47
Figure 3.44	Vietnam's Mean Nominal Monthly Earnings of Employees in Industry (Constant 2011 PPP\$) – 2007-2016	48
Figure 3.45	Vietnam's Mean Nominal Monthly Earnings of Employees in Services (Constant 2011 PPP\$) – 2007-2016	49

Figure 3.46	Labour Input Indices – Indonesia	51
Figure 3.47	Labour Quality Index – Indonesia	51
Figure 3.48	Labour Earnings Share of GDP (Percent) - Indonesia	52
Figure 3.49	GDP Growth and Labour Contributions (Percent) - Indonesia	52
Figure 3.50	Labour Input Indices – Malaysia (Salary and Wages Survey)	54
Figure 3.51	Labour Quality Index - Malaysia (Salary and Wages Survey)	54
Figure 3.52	Labour Earnings Share of GDP (Percent) – Malaysia	55
Figure 3.53	GDP Growth and Labour Contributions - Malaysia (Salary and Wages Survey)	55
Figure 3.54	Labour Input Indices – Malaysia (Labour Force Statistics)	56
Figure 3.55	Labour Quality Index – Malaysia (Labour Force Statistics)	56
Figure 3.56	GDP Growth and Labour Contributions (Percent) - Malaysia (Labour Force Statistics)	57
Figure 3.57	Labour Input Indices – The Philippines	59
Figure 3.58	Labour Quality Index – The Philippines	59
Figure 3.59	Labour Earnings Share of GDP (Percent) – The Philippines	60
Figure 3.60	GDP Growth and Labour Contributions (Percent) - The Phiippines	60
Figure 3.61	Labour Input Indices – Singapore	62
Figure 3.62	Labour Quality Index – Singapore	62
Figure 3.63	Labour Earnings Share of Output (Percent) - Singapore	63
Figure 3.64	Output Growth and Labour Contributions (Percent) - Singapore	63
Figure 3.65	Labour Input Indices – Thailand	65
Figure 3.66	Labour Quality Index – Thailand	65
Figure 3.67	Labour Earnings Share of GDP (Percent) – Thailand	66
Figure 3.68	GDP Growth and Labour Contributions (Percent) - Thailand	66
Table 3.1	Annual Growth Rate of Economic Sectors (Percent) – 2017 and 5 Year Average (2013-2017)	21
Table 3.2	Employment and Wage Profile (2013-2017) – Indonesia	50
Table 3.3	Employment and Wage Profile (2013-2017) – Malaysia	53
Table 3.4	Employment and Wage Profile (2013-2017) – The Philippines	58
Table 3.5	Employment and Wage Profile (2005-2018) - Singapore	61
Table 3.6	Employment and Wage Profile (2011-2018) – Thailand	64

Figure 4.1	Urban Employment Share in 2017	74
Figure 4.2	Trends of Urban Employment Level (Million Persons) and Registered Unemployment Rate (Percent)	75
Figure 4.3	Urban Primary Sector Employment Share by Province	77
Figure 4.4	Urban Secondary Sector Employment Share by Province	77
Figure 4.5	Urban Tertiary Sector Employment Share by Province	78
Figure 4.6	Trends of Urban Average Wage Level and Consumer Price Index	79
Figure 4.7	Urban Primary Sector Average Wage Level by Province	79
Figure 4.8	Urban Secondary Sector Average Wage Level by Province	80
Figure 4.9	Urban Tertiary Sector Average Wage Level by Province	81
Figure 4.10	Top Five Provinces with the Highest Compound Annual Employment Growth (Percent), Non-private Enterprises, 2008-2017	82
Figure 4.11	Top Five Provinces with the Highest Compound Annual Employment Growth (Percent), Private Enterprises, 2009-2017	83
Figure 4.12	Bottom Five Provinces with the Lowest Compound Annual Employment Growth (Percent), Non-private Enterprises, 2008-2017	83
Figure 4.13	Bottom Five Provinces with the Lowest Compound Annual Employment Growth (Percent), Private Enterprises, 2009-2017	84
Figure 4.14	Top Five Provinces with the Highest Compound Annual Wage Growth (Percent), Non-private Enterprises, 2008-2017	84
Figure 4.15	Top Five Provinces with the Highest Compound Annual Wage Growth (Percent), Private Enterprises, 2009-2017	85
Figure 4.16	Bottom Five Provinces with the Lowest Compound Annual Wage Growth (Percent), Non-private Enterprises, 2008-2017	86
Figure 4.17	Bottom Five Provinces with the Lowest Compound Annual Wage Growth (Percent), Private Enterprises, 2009-2017	86
Figure 4.18	Top Five Industries with the Highest Compound Annual Employment Growth (Percent), Non-private Enterprises, 2008-2017	87
Figure 4.19	Bottom Five Industries with the Lowest Compound Annual Employment Growth (Percent), Non-private Enterprises, 2008-2017	88
Figure 4.20	Compound Annual Employment Growth (Percent) by Industry, Private Enterprises, 2009-2017	88
Figure 4.21	Top Five Industries with the Highest Compound Annual Wage Growth (Percent), Non-private Enterprises, 2008-2017	89
Figure 4.22	Bottom Five Industries with the Lowest Compound Annual Wage Growth (Percent), Non-private Enterprises, 2008-2017	89
Figure 4.23	Compound Annual Wage Growth (Percent) by Industry, Private Enterprises, 2009-2017	90
Figure 4.24	Labour Quality by Province, Urban Private Enterprises	92
Figure 4.25	Quality-Adjusted and Unadjusted Labour Indices by Province, Urban Private Enterprises	93

Figure 4.26	Labour Quality by Province, Urban Non-private Enterprises	94
Figure 4.27	Quality-Adjusted and Unadjusted Labour Indices by Province, Urban Non-private Enterprises	94
Figure 4.28	Quality-Adjusted and Unadjusted Labour Contribution to GRDP Growth (Percent), Urban Private Enterprises	95
Figure 4.29	Quality-Adjusted and Unadjusted Labour Contribution to GRDP Growth, Urban Non-private Enterprises	96
Figure 4.30	Chongqing's Labour Quality, Urban Non-private Enterprises	97
Figure 4.31	Chongqing's Quality-Adjusted and Unadjusted Indices, Urban Non-private Enterprises	97
Figure 4.32	Chongqing's Quality-Adjusted and Unadjusted Labour Contribution and GRDP Growth (Percent), Urban Non-private Enterprises	97
Figure 4.33	Hebei's Labour Quality, Urban Private Enterprises	98
Figure 4.34	Hebei's Quality-Adjusted and Unadjusted Indices, Urban Private Enterprises	98
Figure 4.35	Hebei's Quality-Adjusted and Unadjusted Labour Contribution and GRDP Growth (Percent), Urban Private Enterprises	98
Table 4.1	Data Dimensions	91
Table 4.2	Descriptive Statistics, Urban Non-private Enterprises	91
Table 4.3	Descriptive Statistics, Urban Private Enterprises	91
Table 4.4	Variable Definitions and Sources	91

Figure 5.1	Labour Productivity Growth in India (Percent)	103
Figure 5.2	Gross Value Added (GVA) by Sector at Constant Prices Base Year 2011-12 (Percent)	104
Figure 5.3	National Level Trend in Employment and Unemployment Rate (Percent)	105
Figure 5.4	Map of the Five Regions of India	105
Figure 5.5	Unemployment Rates for Sub-National Economies in Northern Region (Percent)	106
Figure 5.6	Worker Population Ratios for Sub-National Economies in Northern Region (Percent)	106
Figure 5.7	Unemployment Rates for Sub-National Economies in North-eastern Region (Percent)	107
Figure 5.8	Worker Population Ratios for Sub-National Economies in North-eastern Region (Percent)	107
Figure 5.9	Unemployment Rates for Sub-National Economies in Southern Region (Percent)	108
Figure 5.10	Worker Population Ratios for Sub-National Economies in Southern Region (Percent)	108
Figure 5.11	Unemployment Rates for Sub-National Economies in Eastern Region (Percent)	109
Figure 5.12	Worker Population Ratios for Sub-National Economies in Eastern Region (Percent)	109

Figure 5.13	Unemployment Rates for Sub-National Economies in Western Region (Percent)	110
Figure 5.14	Worker Population Ratios for Sub-National Economies in Western Region (Percent)	110
Figure 5.15	India Labour Quality Index	115
Figure 5.16	India Quality-Adjusted Labour Index vs. Unadjusted Index	115
Figure 5.17	India GVA Growth And Adjusted vs. Unadjusted Labour Contribution to GVA Growth (Percent)	116
Figure 5.18	India Adjusted vs. Unadjusted Labour Contribution to GVA Growth (Percent)	116
Figure 5.19	Labour Quality Index of 25 Sub-National Economies of India	117
Figure 5.20	Adjusted Labour Index vs. Unadjusted Labour Index of 25 Sub-National Economies of India	118
Figure 5.21	GVA Growth and Adjusted vs. Unadjusted Labour Contribution to GVA Growth of 25 Sub-National Economies of India (Percent)	119
Figure 5.22	Gujarat Labour Quality Index	120
Figure 5.23	Gujarat Quality-Adjusted Labour Index vs. Unadjusted Index	120
Figure 5.24	Gujarat GVA Growth and Adjusted vs. Unadjusted Labour Contribution to GVA Growth (Percent)	121
Figure 5.25	Gujarat Adjusted vs. Unadjusted Labour Contribution to GVA Growth (Percent)	121
Figure 5.26	Delhi Labour Quality Index	122
Figure 5.27	Delhi Quality-Adjusted Labour Index vs. Unadjusted Index	122
Figure 5.28	Delhi GVA Growth and Adjusted vs. Unadjusted Labour Contribution to GVA Growth (Percent)	123
Figure 5.29	Delhi Adjusted Vs. Unadjusted Labour Contribution To GVA Growth (Percent)	123
Figure 5.30	Rajasthan Labour Quality Index	124
Figure 5.31	Rajasthan Quality-Adjusted Labour Index vs. Unadjusted Index	124
Figure 5.32	Rajasthan GVA Growth and Adjusted vs. Unadjusted Labour Contribution to GVA Growth (Percent)	125
Figure 5.33	Rajasthan Adjusted Vs. Unadjusted Labour Contribution to GVA Growth (Percent)	125
Figure 5.34	Sikkim Labour Quality Index	126
Figure 5.35	Sikkim Quality-Adjusted Labour Index vs. Unadjusted Index	126
Figure 5.36	Sikkim GVA Growth and Adjusted vs. Unadjusted Labour Contribution to GVA Growth (Percent)	127
Figure 5.37	Sikkim Adjusted vs. Unadjusted Labour Contribution to GVA Growth (Percent)	127
Figure 5.38	Bihar Labour Quality Index	128
Figure 5.39	Bihar Quality-Adjusted Labour Index vs. Unadjusted Index	128
Figure 5.40	Bihar GVA Growth and Adjusted vs. Unadjusted Labour Contribution to GVA Growth (Percent)	129
Figure 5.41	Bihar Adjusted vs. Unadjusted Labour Contribution to GVA Growth (Percent)	129

Table 5.1	Definitions and Sources of Data	112
Table 5.2	List of Industries Covered	113

Figure 6.1	Indonesia's National Employment (In Million, Left Scale) and Growth Rate of Employment (In Percent, Right Scale), 2008-2017	134
Figure 6.2	Indonesia's National Average Monthly Wage Level (In Rp Million, Left Scale) and Growth Rate (Right Scale)	135
Figure 6.3	Map of The Six Economic Corridors	135
Figure 6.4	Employment in Sumatra Region, in Million, 2008-2017	136
Figure 6.5	Employment in Sumatra Region by Sector, in Million, 2008-2017	137
Figure 6.6	Average Monthly Wage in Sumatra Region by Sector, in Rp Million, 2008-2017	138
Figure 6.7	Employment in Java Region, in Million, 2008-2017	138
Figure 6.8	Employment in Java Region by Sector, in Million, 2008-2017	139
Figure 6.9	Average Monthly Wage in Java Region by Sector, in Rp Million, 2008-2017	140
Figure 6.10	Employment in Bali and Nusa Tenggara Region, in Million, 2008-2017	140
Figure 6.11	Employment in Bali and Nusa Tenggara Region by Sector, in Million, 2008-2017	141
Figure 6.12	Average Monthly Wage in Bali and Nusa Tenggara Region by Sector, in Rp Million, 2008-2017	141
Figure 6.13	Employment in Kalimantan Region, in Million, 2008 - 2017	142
Figure 6.14	Employment in Kalimantan Region by Sector, in Million, 2008-2017	143
Figure 6.15	Average Monthly Wage in Kalimantan Region by Sector, in Rp Million, 2008-2017	143
Figure 6.16	Employment in Sulwesi Region, in Milion, 2008 - 2017	144
Figure 6.17	Employment in Sulawesi Region by Sector, in Million, 2008-2017	145
Figure 6.18	Average Monthly Wage in Sulawesi Region by Sector, in Rp Million, 2008-2017	145
Figure 6.19	Employment in Maluku and Papua Region, in Million, 2008 - 2017	146
Figure 6.20	Employment in Maluku and Papua Region by Sector, in Million, 2008-2017	147
Figure 6.21	Average Monthly Wage in Maluku and Papua Region, in Rp Million, 2008-2017	147
Figure 6.22	Quality-Adjusted and Unadjusted Labour Input in Sumatra	149
Figure 6.23	Quality-Adjusted Labour Index in Sumatra	150
Figure 6.24	Quality-Adjusted Labour Index Using Total Compensation in Sumatra, by Province	150
Figure 6.25	Quality-Adjusted Labour Index Using Average Wage in Sumatra by Province	151
Figure 6.26	Adjusted and Unadjusted Labour Input in Java	151
Figure 6.27	Quality-Adjusted Labour Index in Java	152

Figure 6.28	Quality-Adjusted Labour Index using Total Compensation in Java, by Province	153
Figure 6.29	Quality-Adjusted Labour Index using Average Wage in Java, by Province	153
Figure 6.30	Adjusted and Unadjusted Labour Input in Bali and Nusa Tenggara	154
Figure 6.31	Quality-Adjusted Labour Index in Bali and Nusa Tenggara	154
Figure 6.32	Quality-Adjusted Labour Index using Total Compensation in Bali and Nusa Tenggara, by Province	155
Figure 6.33	Quality-Adjusted Labour Index using Average Wage in Bali and Nusa Tenggara, by Province	155
Figure 6.34	Adjusted and Unadjusted Labour Input in Kalimantan	156
Figure 6.35	Quality-Adjusted Labour Index in Kalimantan	156
Figure 6.36	Quality-Adjusted Labour Index using Total Compensation in Kalimantan, by Province	157
Figure 6.37	Quality-Adjusted Labour Index using Average Wages in Kalimantan, by Province	157
Figure 6.38	Adjusted and Unadjusted Labour Input in Sulawesi	158
Figure 6.39	Quality-Adjusted Labour Index in Sulawesi	158
Figure 6.40	Quality-Adjusted Labour Index using Total Compensation in Sulawesi, by Province	159
Figure 6.41	Quality-Adjusted Labour Index using Average Wage in Sulawesi, by Province	159
Figure 6.42	Adjusted and Unadjusted Labour Input in Maluku-Papua	160
Figure 6.43	Quality-Adjusted Labour Index in Maluku And Papua	160
Figure 6.44	Quality-Adjusted Labour Index using Total Compensation in Maluku and Papua, by Province	161
Figure 6.45	Quality-Adjusted Labour Index using Average Wage in Maluku and Papua, by Province	161
Figure 6.46	GRDP Growth, Quality-Adjusted and Unadjusted Labour Contribution to GRDP Growth (using Total Compensation)	164
Figure 6.47	GRDP Growth, Adjusted Labour and Unadjusted Labour Contribution to GRDP Growth (using Average Wage)	165
Table 6.1	Proxy Method	148
Table 6.2	Labour Share of GRDP in 34 Indonesian Provinces, 2010-2017	162

Chapter 1 Introduction

Tilak Abeysinghe

1.1 Labour Productivity and Per Capita Income

Among productivity measures, labour productivity takes a prominent place for a number of reasons. First, improving living standards requires sustained growth in labour productivity. Second, from time immemorial man has used tools and knowhow to improve his productivity. Therefore, other factors of production (physical capital, human capital, innovation) play complementary roles in the task of improving labour productivity. Third, the competitiveness of modern economies depends on the extent to which improvements in labour productivity can counter rising labour costs.

Figure 1.1 Growth of Per Capita GDP (Percent) and Labour Productivity (GDP/employment)

Source: Respective National Bureau of Statistics

With regard to the first point, if labour productivity is measured as output per worker (even as per work hour) as is traditionally done, it parallels per capita income; therefore, as a measure of standard of living it is redundant. Figure 1.1 shows the growth rate of per capita income (real GDP/population) and output per worker (real GDP/employment) for two primarily labour-exporting countries (China, India) and two primarily labour-importing countries (Malaysia, Singapore). Despite being growth rates, the close co-movement of the two measures is evident.

Figure 1.2 Employment/Population Ratio

Source: Respective National Bureau of Statistics

The key variable that can create a wedge between per capita income and output per worker is the shrinkage of the working-age population and thereby of employment across many countries. However, if both the numerator and the denominator of the labour productivity measure change by the same proportion, output per worker remains unaffected. Figure 1.2 shows the employment/ population ratio for the countries shown in Figure 1.1. All four countries face the problem of a shrinking working-age population. This is well reflected in the employment/population ratio in China and India. The downward trend is also probably aided by labour export. Malaysia and Singapore are, on a net basis, labour-importing countries. As a result, their employment to population ratio has fluctuated and trended upward most of the time in the sample period. All these differences roughly cancel out in the GDP/employment ratio. Therefore, Figure 1 clearly shows that the information content in per capita income and the traditional measure of labour productivity is roughly the same.

1.2 Labour Productivity in the Digital Economy

Although the world economy has evolved substantially over the last few decades, some economic measures have not kept up with the change. The labour productivity measure is one of them.¹ The current measure of labour productivity must have originated in traditional agriculture when the vast majority of people engaged in food production in small landholdings. The farming tools, techniques and farmer skills were very similar for all the farmers. If land fertility and water availability were roughly the same in a given area, then it was very sensible to measure farmer productivity by the average measure, output per farmer. There was great simplicity in this measure. With the industrial revolution, however, all these parameters have changed. Both output and factor inputs are now highly differentiated, and measurement issues keep mounting.

Despite substantial improvements that have taken place over the years, there are serious measurement issues regarding both the numerator and the denominator of the labour productivity measure. The World Bank recently released a large-scale study on labour productivity measured as

Another such measure is the old age dependency ratio which is measured simply by the demographic ratio of old population to working age population. Using data from Japan and Singapore Abeysinghe (2019) shows that savings adjusted old-age dependency does not look as alarming as what the demographic ratio suggests in aging societies.

real GDP per worker (Dieppe, 2020). This study corroborates the already noted slowing of labour productivity growth in many countries, especially after the global financial crisis (GFC). The study attributes this slowing to declaration of the growth of (1) working-age population, (2) educational attainments, (3) global value chain, and (4) reallocation of labour across different sectors. What is missing here is the under-measurement of GDP in the fast-expanding digital space.

Inadequacy of GDP as a measure of the well-being of a country is well documented; when the crime rate goes up, GDP also goes up, when outdoor pollution goes up, demand for indoor air purifiers goes up and so does GDP. Setting this point aside, Brynjolfsson et al. (2019) discuss in detail the under-measurement problem of GDP and suggest a way to assess consumer surplus generated by digital goods and services.

Nearly zero-priced online services have replaced physical goods and services that were sold at certain prices. Such items with a price get counted towards GDP whereas zero-priced items do not unless some imputing is done. Brynjolfsson et al. (2017) note that in the U.S. the music recording industry lost about 40 percent revenue between 2004 and 2008 because people have stopped buying physical items like CDs and switched to online music. Free Wikipedia killed the business of the printed encyclopaedia. After 244 years Encyclopaedia Britannica had to succumb to this fate in 2012. Similar transformations are occurring in many fields. The usage of these nearly free online services is spreading rapidly.

How to address the issue of under-measurement of GDP is this information age is an open research agenda with no satisfactory solution at this stage. The cost of producing physical goods that provide digital services such as smartphones is counted in GDP calculations. Does this cost fully account for the additional consumer surplus that these services generate? How about environmental costs and benefits? Given these intricate issues and until satisfactory imputation methods are figured out, we have to work with currently available GDP and sectoral value-added figures.

1.3 Labour Productivity and Labour Quality

The other problematic issue is the denominator of the labour productivity measure. Total employment or total work hours do not account for labour heterogeneity. Even in casual conversations, it is common to hear statements like 'so and so is very productive and so and so is not' or 'do something productive.' This intuitive meaning of productivity is not contained in the standard measure. It simply assumes that the productivity of a structural engineer is the same as that of a mason or a mechanic.

The labour quality assessment, however, has been well addressed. Under certain assumptions, the real wage of a worker is equal to his/her marginal productivity. Although this may not hold exactly at an individual level, it is likely to hold as a group average. The basic approach Jorgenson and his co-researchers (Jorgenson, Gallop and Fraumeni, 1987; Jorgenson, Ho and Stiroh, 2005) have adopted is to attach a weight to each labour category based on the wage share of that category. This weighted average of labour input is known as the quality-adjusted labour input (QALI). Maddison (1987) provides an extensive literature survey of the studies that pioneered the idea of accounting for quality of labour and capital inputs for the computation of total factor productivity.

Jorgenson and his co-researchers classified labour into five categories (gender, age, education, class, and industry). They compiled the U.S. data on hours worked and hourly wage rates and carried out extensive computations to derive QALI both at the category and aggregated levels. The Bureau of Labor Statistics (BLS, 1993), on the other hand, invoking theory of human capital, points out what matters for wage differentials is education and experience (on the job training) by gender and carried out computations in a simplified framework. Subsequent research on other countries has adapted some variation of these methodologies depending on data availability.

1.4 Contribution of Quality Labour to Growth

Although we could compute QALI we still do not have a corresponding measure of qualityadjusted labour productivity. What Jorgenson and co-researchers have done is to compute both quality-adjusted labour and capital inputs and then work out total factor productivity. It would be of great interest to develop a quality-adjusted labour productivity measure. We will leave this to future research. An indirect measure of quality-adjusted labour productivity is the contribution of QALI to GDP growth. This can easily be obtained in a growth accounting framework as is done in this exercise. However, this approach has its limitations.

1.5 Chapter Summary

The analysis in this exercise was carried out before the onset of the COVID-19 pandemic. The pandemic is going to create major structural shifts in the global economy. Understanding the trends of labour quality before the pandemic is invariably helpful in formulating structural changes that would enhance labour productivity in the post-pandemic world.

In Chapter 2, Tilak Abeysinghe, Aishwarya Narayan and Zhang Xuyao provide a summary of some key studies on QALI methodologies and the adapted methodology for this study. As stated above (Section 1.2) the major obstacle was the data scarcity; data was not available in a comparable manner across the countries and sub-national economies covered in the study. The adapted methodology was governed by this constraint.

In essence, the QALI is computed in this exercise using only the industry classification. By no means is this a serious weakness of the study. Labour reallocation from low-productivity sectors to high-productivity sectors has been a powerful mechanism for productivity growth (Baumol, 1967). The World Bank study cited above (Dieppe, 2020) estimates that about two-fifths of productivity gains in developing economies have come from labour reallocation. Therefore, if cross-sector labour movements are flexible, industry classification captures a reasonable amount of labour quality improvements. Nevertheless, this method does not capture labour quality improvements within an industry.

Again, constrained by data, this study uses total employment instead of hours worked. Some researchers have used full-time equivalent employment, i.e. total hours worked divided by annual average hours worked in full-time jobs. Systematic data on hours worked is not available for the countries in this study. One issue with hours worked, however, is that the marginal productivity approach does not account for labour intensity in production. To produce a given output, one person may take a longer time than the other person. Nevertheless, as companies shift towards deliverables within a given time frame, the number of hours spent on the work becomes less relevant. In this sense, the more appropriate indicator of labour input would be the number of workers, not hours. **In Chapter 3,** Tan Kway Guan provides a trend analysis of value-added, employment and earnings by major sector for the ASEAN economies of Brunei, Cambodia, Indonesia, Laos, Malaysia, Myanmar, the Philippines, Singapore, Thailand, and Vietnam. Constrained by data, he carries out the QALI computations only for Indonesia, Malaysia, the Philippines, Singapore and Thailand (ASEAN-5).

A survey of the literature on ASEAN economies finds a divergence between agricultural and non-agricultural labour productivity. Some studies indicate that the share of agriculture in GDP has a negative impact on labour productivity of several ASEAN economies and that the shift in labour from agriculture to services has generated high rates of labour productivity growth. The most common factors shaping labour productivity growth include investments in ICT, institutional infrastructure and human capital.

In analysing the trends and patterns in output and employment for the period 2000 - 2017 in ASEAN, it is observed that output has transitioned from agriculture and industry to largely service sectors. This transition is reflected in the growing share of employment in services. It should be noted, however, that a high share of employment still remains in agriculture in many ASEAN economies. As the composition of the ASEAN economies continues to further transition away from agriculture, the ability of the labour force also to make that transition becomes an issue, potentially raising unemployment and income inequalities.

The calculations of QALI for the ASEAN-5 economies lead to the following observations: (i) the labour quality in these economies has been on the rise in general. (ii) Rising QALI, computed based on industry classifications, indicates that workers move from low-productivity industries to high- productivity industries. (iii) Rising labour quality clearly indicates that quality-adjusted labour productivity (if properly measured) has improved though the labour productivity based on the traditional measure appears to be falling in countries like Singapore. (iv) labour share of GDP in ASEAN-5 is much lower than that of the OECD economies, typically no higher than 45 percent. When measured by low labour share, the contribution to GDP growth from both quality-adjusted and unadjusted labour is low though the former picks up a higher contribution.

In Chapter 4, Mao Ke and Zhang Xuyao investigate the development of China's labour quality at the provincial level from 2008 to 2017. Because of the data constraint, the study compiles provincial employment and wage data for non-private enterprises across 19 industries and private ones across seven industries. All Mainland China provinces except Ningxia and Tibet are covered in the study (29 provinces). One caveat is that the research scope is restricted to only the urban economy as rural employment and wage data are virtually non-existent. However, this restriction does not undermine the significance of this exercise; it delivers insights into China's urban economy, which has seen rapid and drastic changes in the labour market since the country's reforms after 1978.

China's urban employment has trended upward over the sample period since 2008. However, employment growth in many industries has dropped sharply after 2013. These drops could be ascribed to an economic policy of that year, a policy which promoted competition between private firms and unproductive state-owned enterprises. Since then, employment in private enterprises has surpassed its non-private counterpart.

The calculations of QALI for urban provincial economies of China lead to the following observations: (i) China's labour quality in private and non-private enterprises has experienced distinct paths. The labour quality index has fluctuated more for non-private enterprises than for private ones in most provinces, although both show a similar pattern of slow upward momentum. (ii) The quality-adjusted and unadjusted labour input indices demonstrate almost identical trends

over the period of analysis. This indicates that labour mobility across industries has been low. The lack of transfer of human capital from low-productivity to high-productivity industries may lead to rising unemployment levels and increasing regional inequalities. (iii) The labour share of gross regional domestic product (GRDP) has been very low. With the exception of a few areas such as Beijing, the highest rates observed are below 20 percent for non-private enterprises and below 15 percent for private enterprises. This translates into very low contributions to GRDP growth from both quality-adjusted and unadjusted labour, mostly less than one percentage point although GRDP has grown by about 10 percent to 20 percent. (iv) This further corroborates China's capital-intensive growth strategy over the past decade.

In Chapter 5, Sumedha Gupta has examined how labour quality has evolved at the state level in India. Severely constrained by data, Sumedha confines the study to the manufacturing sector that covers about 10 percent of the economy. Although this is a small percentage of the economy, insights the analysis generates are useful for other sectors of the states. The study, which encompasses 29 industries, covers 30 states over the time period 2008/09 - 2016/17.

At the national level between 2011/12 and 2015/16, the worker population ratio of India decreased from 50.8 to 47.8 percent while the unemployment rate increased from 3.8 to 5 percent. This indicates that there was a lack of job creation in the country, coinciding with a time when the country was experiencing a demographic dividend. At the sub-national level, there was a huge variation in employment trends across the different regions with some states doing well while others fell behind by wide margins

The labour quality index at the national level shows no trend from 2008 to 2013 but declined slightly between 2013 and 2016. The decline can be attributed to several factors such as a lack of creation of quality jobs for the increasing workforce, complex labour laws and strict laws for large firms which hire more workers. The quality-adjusted and unadjusted labour contributed only about one to two percentage points to the gross value added growth signifying that most of the contribution is by physical capital and total factor productivity; the workers get the short end of the stick since their wages are very low.

At the sub-national level, the chapter presents results in detail for five sub-national economies – Gujarat, Delhi, Rajasthan, Sikkim, and Bihar – which showcase the varied nature of labour quality, quality-adjusted and unadjusted labour input indices, depending on the type of industries they support, the sub-national level labour laws and the quality of the labour force.

The analysis leads to the following observations: (i) Sikkim and Rajasthan highlight the states where labour quality has improved over the years though the unemployment rate also has increased. Creation of more high-quality jobs could be the reason for the crowding out of low-quality jobs. (ii) Delhi and Gujarat highlight states where both quality-adjusted and unadjusted indices mostly coincide, without much improvement in labour quality. (iii) Bihar highlights the case where the quality unadjusted labour index is moving above the adjusted index, indicating a lack of quality jobs in the sub-national economy. (iv) As a result of low labour share, the contribution of quality-adjusted and unadjusted labour to the growth of gross value added of manufacturing of the states has been very low, below two percentage points.

In Chapter 6, Doris Liew Wan Yin examines labour quality for the sub-national economies of Indonesia. Using the industrial classification as delineated in the Indonesia Standard Industrial Classification 2009, the study covers nine broad sectors of Indonesia, including agriculture, mining, manufacturing, construction and services. The study comprehensively covers all six

regions (Java, Sumatra, Bali and Nusa Tenggara, Kalimantan, Sulawesi and Maluku and Papua) and 34 provinces of Indonesia from 2008 to 2017. The national-level results are covered in Chapter 3.

The labour quality adjustment is done in two ways, one using total compensation and the other using average wages. The results show: (i) Labour quality in Java, Sumatra, Bali and Nusa Tenggara, Kalimantan and Sulawesi regions has been increasing over the years. This is attributable to a general increase in wages and employment in more productive sectors such as mining, manufacturing, finance and energy. (ii) While QALI based on total compensation has been increasing in the Maluku and Papua region, QALI using average wages shows fluctuations. (iii) At the provincial level, most of the provinces in Indonesia experienced a rise in QALI. In South Sulawesi, for example, QALI has increased due to its big and fast-growing mining industry. In North Maluku, it is due to the government's focus on job creation and worker training. On the other hand, Riau Islands shows worsening QALI due to stagnant growth in two of its largest industries, manufacturing and mining. (iv) The contribution to GRDP growth from both quality-adjusted and unadjusted labour has been low for almost all the provinces, suggesting that GRDP growth in Indonesia is driven mostly by capital or total factor productivity. (v) The positive growth in QALI reflects the shift in the country's focus from agriculture to the secondary and tertiary sectors. However, Indonesia's labour force today is still low-skilled.

Policy implications: The overall exercise elicits some useful policy implications. Three key highlights are:

(i) Typically, rising education levels are used as an indicator of human capital accumulation. The potential labour quality signified by the education level must translate into realised labour quality. The QALI computations in the exercise capture the realised labour quality improvements. The ASEAN-5 economies in general show an improvement in labour quality over the years as a result of workers moving from low-productivity industries to high-productivity industries. This is also the case in general at the sub-national level in Indonesia. This has happened in tandem with increasing education levels. If within industry labour quality improvements are captured, we could expect a further increase in the labour quality measure.

(ii) The situation at the sub-national level in China and India seems to be very different. The limited data used at the sub-national level indicates a lack of labour quality improvement in most of the sub-national economies. This indicates a lack of labour mobility across industries. If rising education levels do not translate into realised labour quality improvements, a deadweight loss is generated. This includes the dissatisfaction of workers in mismatched occupations.

(iii) The low labour share (wage share) in GDP seems to be a persistent problem in all the countries and sub-national economies covered in the study. This seems to be more acute in China and India. The problem is closely connected to rising income inequality despite high growth rates observed in these countries before the pandemic. Implications of rising income inequality are well discussed in academic and policy circles.

References

- Abeysinghe T. (2019), "Old-age dependency: Is it really increasing in aging populations?" Applied Economics Letters, 26(13), 1111-1117 (online Oct 23, 2018).
- Baumol W. J. (1967), "Macroeconomics of unbalanced growth: The anatomy of urban crisis," American Economic Review 57 (3): 415–26.
- Bureau of Labor Statistics (1993), Labor Composition and U.S. Productivity Growth 1948-90, U.S.
 Department of Labor, Bureau of Labor Statistics, Bulletin 2426, Washington DC:
 U.S. Government Printing Office, December.
- Dieppe A. (2020), Global productivity: Trends, Drivers, and Policies, Edited by Alistair Dieppe, World Bank Group, Washington DC (online)
- Brynjolfsson E. Collis A. and Eggers F. (2019), "Using massive online choice experiments to measure changes in well-being, Proceedings of the National Academy of Sciences, https://doi.org/10.1073/pnas.1815663116
- Jorgenson D. W., Gollop FM, and Fraumeni B.M. (1987), Productivity and US Economic Growth. Harvard University Press.
- Jorgenson D. W., Ho M, S. and Stiroh K.J. (2005), Productivity, Volume 3: Information Technology and the American Growth Resurgence, The MIT press.
- Maddison, A. (1987), "Growth and slowdown in advanced capitalist ecnomies: Techniques of the quantitative assessment," Journal of Economic Literature, 25(2), 649-698.