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Abstract

We employ patent data to unravel the spatial dynamics and determinants of recent blockchain techno-

logical advancements. Our findings reveal four pivotal insights: (1) Lower-income countries exhibit a

surprisingly robust propensity for blockchain innovation, diverging from traditional technology develop-

ment patterns. (2) The 2017 cryptocurrency bubble served as a catalyst, driving heightened enthusiasm

and research in blockchain advancements. (3) There are heterogeneous spillover effects in blockchain in-

novation, with a few leading innovators influencing both peer nations and the broader global landscape.

(4) Regulatory environments play a decisive role; countries with lenient cryptocurrency regulations are

more inclined to foster blockchain innovations compared to nations imposing strict bans.
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1. Introduction

Since the introduction of Bitcoin and the underpinning distributed ledger technology (DLT) in

Nakamoto (2008), Blockchain has emerged as an important technological innovation with the poten-

tial to transform several industries. Studies find that blockchain technology’s wide-ranging implications

can help add USD 1.76 trillion to the global GDP by 2030 (PWC, 2020). Given the transformative

potential, it is important to understand the geographic patterns and driving factors behind blockchain

technology evolution.

Figure 1: The basic structure of blockchain

Applying blockchain technology benefits businesses across multiple sectors as the decentralised net-

work of blockchain operations ensures trust among the network participants and eliminates the need

for a central authority or intermediary. The DLT functions as a shared and secure database where

up-to-date information is simultaneously available to all participants (Zhang and Jacobsen, 2018; Zheng

et al., 2018; Nofer et al., 2017). As illustrated in Fig. 1, data is structured into “blocks,” each block

permanently “chained” together through cryptographic and immutable signatures known as “hashes,”

referencing previous blocks. Notably, any alteration or access to blockchain data is recorded in these

hashes. This unique characteristic allows blockchain to increase trust, security, and transparency (Aste

et al., 2017). The advantages of blockchain technology applications can transform the future of several

traditional industries, including banking, government, and healthcare, through improved data security

and operational efficiency.

Figure 2: Application of blockchain technology

Originally conceived as the foundational infrastructure for cryptocurrencies, blockchain technology

has transcended beyond its initial purpose to applications in other fields. For example, banks use self-

executing “smart contracts” with contract terms directly computer-coded onto a blockchain to increase
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security and convenience in banking-related registrations and transactions (Podmurnyi, 2023). Another

example is the integration of blockchain technology in traditional data storage solutions to enhance

traceability and digitalization in fields like taxation, resource management, and healthcare (Chakraborty

et al., 2017; Setyowati et al., 2020; Tapscott and Tapscott, 2020; Collosa, 2021). The fields with prospec-

tive applications of blockchain technology are shown in Fig. 2. In addition, blockchain has paved the way

for novel technologies and economic activities, exemplified by the rise of the Internet of Things (IoT)

and non-fungible tokens (NFTs) (Borri et al., 2022).

This paper examines the evolution of blockchain innovations across technology fields and geographies.

Using patent data, we assess the impact of blockchain innovations across various fields and identify the

underlying driving forces. Through a systematic examination of patent data and cross-field impact

analysis, our research sheds light on the dynamic interactions between blockchain advancements and

innovations in diverse industries, thereby deepening our understanding of the technological landscape

and its potential implications for future research and policy-making.

We provide three main contributions to the literature on blockchain technology innovations. First,

we use the patent data to study blockchain technology development. Being a nascent form of technology,

blockchain is unclassified in most databases. We navigate the data constraint by identifying blockchain-

related patents using the methodology in Clarke et al. (2020). We identify the key country players and

technology fields in blockchain technology applications using patent data.

Second, we use the revealed technology framework to comprehensively analyse countries’ specialisa-

tion in blockchain technology applications. Furthermore, we construct the technology space to examine

the role of density and divergence of blockchain innovation in facilitating blockchain technology speciali-

sation. Density pertains to the ability of new technological sectors to adopt blockchain technology, given

other sectors’ existing blockchain technological strengths. Diversity measures the scale of application of

blockchain technology across multiple technical fields. While the potential for extensive application of

blockchain technology across various domains is evident, a quantitative evaluation of blockchain technol-

ogy specialisation among countries is missing in existing literature.

In terms of the third contribution, we examine the role of the 2017 cryptocurrency bubble event in

enabling blockchain specialisation in the top innovator countries. The study also evaluates the importance

of cryptocurrency regulation frameworks in blockchain technology applications.

The remainder of this paper is structured as follows: In Section 2, we discuss the data and outline

the method for identifying blockchain patents. This section also encompasses a descriptive analysis of

blockchain patenting activity, providing an overview of its evolution. Section 3 presents the construction

of measures concerning blockchain technology specialisation, density and diversification, the empirical

framework and results. Finally, Section 5 concludes.

2. Data and descriptive analysis

This paper employs the PATSTAT database, a backbone data set for patent statistics research, to

conduct a comprehensive analysis of blockchain patents. Published by the European Patent Office (EPO)

on behalf of the Organization for Economic Cooperation and Development (EPO, 2022), the PATSTAT

database encompasses a vast collection of over 100 million patents from 196 patent offices spanning the

years 1782 to 2022. This extensive dataset includes patent bibliographic data, citation information, legal

events, inventor, and applicant data, among other crucial details.

However, it is essential to acknowledge that the complexity of data sources introduces challenges

regarding data completeness, particularly regarding country codes and technical classifications of patents.
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To mitigate the issue of missing information, we adopt the imputation method officially recommended

by the EPO, as proposed by de Rassenfosse and Seliger (2021). This approach aids in inferring the

absent data points, ensuring a more robust analysis. Moreover, for the Autumn 2022 edition (version

5.20) database version, we refer to the imputation method and results outlined in the technical note by

Ge et al. (2022).

Given the ambiguity surrounding the definition of blockchain, it is imperative to accurately identify

relevant patents within the PATSTAT database. Although a common practice involves filtering patent

titles and abstracts using keywords such as “blockchain” and “bitcoin”, this approach can lead to the

inclusion of less related technologies, potentially introducing noise in our analysis. To address this

challenge and avoid false positives, we adopt a method proposed by Clarke et al. (2020). This approach

combines specifically related patent classifications with carefully selected keywords, which were developed

in collaboration with experts and patent examiners from the EPO. By incorporating domain expertise,

this method enhances the precision of our patent identification process, ensuring that our analysis remains

focused and robust.

Trends in blockchain patent applications:. Fig. 3 illustrates the rising trend in blockchain patent appli-

cations. The vertical axis represents the number of patent families by their earliest filing year. From the

figure, the growth in blockchain patenting activity has been exponential since 2015, reaching its peak

with over 8,000 blockchain patent families in 2020. It is important to note that the decrease in patent

applications from 2021 onward is primarily due to low data coverage and does not necessarily imply a

decline in blockchain technology advancements.

Figure 3: Number of blockchain patent families by earliest filing year

Across the world, we find that blockchain development is concentrated in North America, Europe, and

Asia. Aggregating the number of patent families by inventor country code, we present the distribution
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in Fig. 4. To ensure accuracy and avoid double counting, we count a country only once when multiple

inventors reside in the same location. Notably, the United States and China have emerged as two

prominent giants in blockchain inventions, contributing 5,439 and 3,025 patent families, respectively.

Major OECD countries such as South Korea, Germany, the United Kingdom, and Japan also play

prominent roles in the landscape of blockchain innovation. Notably, India demonstrates a comparable

level of prowess in blockchain innovation, positioning itself on par with these developed countries. This

observation underscores India’s rising significance and influence in blockchain technology.

Figure 4: Geographical distribution of blockchain patent families by inventor country (2015-2021)

Referring to Fig. 5, which demonstrates the ranking of the top 12 countries based on the number of

blockchain patent families, one can observe that the ranking of the top 12 countries is relatively stable.

Notably, China and India stand out with remarkable development from 2015 to 2020.

Note: After 2020, the data is not complete.

Figure 5: Ranking of inventor countries by number of patent families

Turning our attention to the top applicants on a global scale, it is important to note that the
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applicant of a patent is considered the legal owner of the patent. Fig. 6 provides a comprehensive list of

the top 20 players in this regard. The first column displays the names of these applicants, all of which

are private companies, with a majority being widely recognized in the world of finance or technology.

The second column reveals the headquarters of these companies, with half of them being U.S.-based

companies, closely followed by Chinese companies. Furthermore, countries such as the United Kingdom,

Switzerland, Germany, South Korea, and Ireland each have one company represented on the list. Despite

the Chinese companies being half in number compared to the United States, the number of patent families

attributed to them is nearly 1.5 times higher than that of the United States.

Figure 6: Top 20 blockchain invention applicants globally (2015-2021)

Regarding the analysis from a technical field perspective, patents in the PATSTAT database are

classified under the World Intellectual Property Organization (WIPO)’s classification, comprising 35

technical fields further aggregated into five technical sectors, namely, “Electrical engineering,” “Instru-

ments,” “Mechanical engineering,” “Chemistry,” and “Other Fields” (EPO, 2022). It is important to

note that a single patent filing could belong to one or multiple technical fields, and in cases of multiple

fields, PATSTAT assigns different weights, where a higher weight indicates a stronger relationship be-

tween the application and the technical field. It is essential to maintain a total weight of 1 for each patent

application. To analyze the technical constitution of blockchain technology more accurately, we sum the

weights associated with each technical field using patent family-level data, thus avoiding duplication

issues that could arise at the patent level.

A significant proportion (96.37%) of blockchain patent families belong to the electrical engineering

(EE) sector. However, such a high percentage can potentially distort our analysis of cross-sector inte-

gration of blockchain technology. Among the 28,726 blockchain patent families, 2,821 (approximately

9.8%) are “hybrid” families, consisting of at least one non-EE technical field. As depicted in Fig. 7,

the presence of non-EE technical fields rises drastically, from less than 5% to slightly over a quarter,

highlighting the significance of cross-sector applications of blockchain technology.

An analysis of the word clouds of key terms extracted from abstracts shows that data storage and
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Note: The pie chart on the left presents the distribution of hybrid blockchain patents across the five technical sectors. The
bar chart on the right reports the total sum of weights over the period of 2015-2021 by each technical field. 14 fields with
less than 5 total weights are omitted from the bar chart.

Figure 7: Number of hybrid blockchain patent families by technical sectors and fields (2015-2021)

transactions represent blockchain technology’s most popular application scenarios in non-EE fields. Fig. 8

highlights frequent occurrences of terms such as “transaction,” “payment,” “wallet,” and “financial,” sig-

nifying the prominence of transactions as a popular application scenario of blockchain technology. More-

over, terms like “database,” “storage,” “computing,” and “memory” also appear frequently, underscoring

another popular application scenario related to data storage. For instance, blockchain technology helps

to securely store health insurance account details, game account passwords, and biometric information.

Figure 8: Keywords from the abstracts in non-electrical engineering (non-EE) blockchain patents

Fig. 9 shows the share of blockchain patent families in non-EE fields between two distinct periods,
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namely, 2015-2017 and 2018-2020. The key players exhibit heterogeneity in the blockchain application

evolution. Notably, the United States exhibits the most stable and balanced integration of blockchain

technology. India emerges as a fast-growing player, displaying remarkable diversification in its appli-

cations. In contrast, Japan appears to focus on integrating blockchain technology with control and

transport systems, while China’s emphasis lies in applications related to control and medical technology.

Figure 9: The evolvement in non-electronic engineering (non-EE) fields by inventor country code

3. Empirical framework

With preliminary evidence of country-level heterogeneity arising in the extent of blockchain technol-

ogy development and its application in other technical fields in Section 2, we use regression analysis to

further examine the driving factors of diversification and specialization. We utilise the Revealed Tech-

nological Advantage framework to derive the measure of blockchain specialisation and diversification:

RTAc,j ,t =
Patentsc,j ,t∑
j Patentsc,j ,t

/ ∑
c Patentsc,j ,t∑
c,j Patentsc,j ,t

, (1)

where RTAc,j ,t is the revealed technological advantage of country c in blockchain applications in technical

field j at period t, Patentsc,j ,t pertains to the number of blockchain patent families. Thus, RTAc,j ,t

compares country c’s share of blockchain patent families in the technical field j to the worldwide share

of blockchain patent families across all technical fields.

Specialisation:. Sc,j,t is a binary variable that takes the value 1 if country c’s revealed technological

advantage in blockchain patent family applications (RTAc,j ,t) exceeds 1 in technical field j at time t and

0, otherwise:

Sc,j,t =

1, RTAc,j ,t > 1

0, otherwise.
(2)

In other words, Sc,j,t = 1 implies country c’s specialisation in blockchain technology application in

field j at period t since the share of blockchain patent applications exceeds the global average.
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Diversification:. Fig. 10 shows that many countries attained blockchain specialisation (Sc,j,t = 1) in

the Electrical Engineering (EE) sector in 2015. Other than established blockchain innovators like the

U.S. or China, most countries do not achieve a comparable level of specialisation across non-EE fields

in 2020. This motivates further investigation of the diversification patterns of blockchain technology

applications.

Figure 10: The geographic and sectoral distribution with RTA > 1
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We identify the diversification of blockchain technologies using an “upgrade event” which pertains to

the period t when country c starts diversifying to blockchain technology applications in field j. First, we

characterise short-term diversification as cases with blockchain specialisation in the current period while

specialisation was absent in the previous period (Sc,j,t = 1 and Sc,j,t−1 = 0). Second, we characterise

medium-term diversification as cases where there was no blockchain technology specialisation at the

beginning period of the sample, albeit with specialisation in the current period (Sc,j,t = 1 and Sc,j,2015 =

0).

Following Perruchas et al. (2020), we estimate two separate probit models to identify the driving

forces of diversification and specialization:

Diversification

P (Sc,j,t = 1, Sc,j,q = 0) = Φ (θ0 + θ1Densityc,j,t−1 + θ2Densityc,j,t−1 × logGDPc,t + θ3 logGDPc,t

+θ4DIVc,t + θ5DIV ×DIV + θ6 logSizej,t + θ7HIj,t + θ8ITCj ,t + δc + γj + λt + ϵc,j,t) , q ∈ {t−1, 2015},
(3)

Specialisation

P (Sc,j,t = 1) = Φ (θ0 + θ1Densityc,j,t−1 + θ2DIVc,t + θ3DIV ×DIV + θ4 logSizej,t + θ5HIj,t

+θ6ITCj ,t + θ7 logSizej,t ×DIVc,t + θ8HIj,t ×DIVc,t + δc + γj + λt + ϵc,j,t) ,

(4)

where q = t − 1 and q = 2015 in Eq. (3) refers to the context of short-term and medium-term

diversification, respectively. The explanatory variables in Eqs. (3) and (4) are elaborated as follows:

Technological space. Literature shows that existing patent bundles can help to facilitate the establish-

ment of new technological strengths (Perruchas et al., 2020; Acemoglu et al., 2016; Leten et al., 2007).

We incorporate this in Eqs. (3) and (4) using the lagged Densityc,j ,t term corresponding to linkages

within a country’s technological space on the diversification of blockchain applications. A higher value

of Densityc,j ,t indicates that given the technology field j in year t, country c has strong technical ca-

pabilities in j’s related fields. Densityc,j ,t variable is derived using two components: (1) the number

of technical fields in which a country holds patent families and (2) the inter-technology relatedness of

such technical fields. To measure the inter-technology relatedness, we follow Hidalgo et al. (2007); Neffke

(2009) to construct the below relatedness matrix Ri,j,t for each pair of technical fields, i and j, covered

by blockchain patents in period t:

Ri,j,t =
Ni,j,t√
Ni,tNj,t

, (5)

where Ni,j,t counts the co-occurrences of technical fields i and j, while Ni,t and Nj,t count the number

of patent families at period t. Consequently, a higher value Ri,j,t indicates that technical fields i and

j are associated more with the same patent families, indicating a stronger relatedness. However, one

must note here that the relatedness of non-EE technologies mostly reflects the patent portfolios of just a

handful of technologically advanced countries. The majority of blockchain patents (96.37%) are related

to EE. Advanced countries dominate the smaller share of non-EE blockchain patent families (see Fig. 10

).
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Using Ri,j,t in Eq. (5), we capture Densityc,j ,t as follows:

Densityc,j ,t =

∑
i Ri,j,tXc,i,t∑

i Ri,j,t
, (6)

where Xc,i,t is a binary variable that takes the value 1 if country c patents in blockchain technology i

during period t and 0, otherwise. A country with patent families in diverse fields will likely have a high

value of Densityc,j ,t . In other words, countries with patent families in every technical field exhibit a

Densityc,j ,t value close to 1. When considering countries with equally diverse patent family portfolios,

those characterized by inherently high inter-technology relatedness (Ri,j,t) exhibit greater density.

Technological distribution. Leten et al. (2007) shows the importance of equitable distribution of technol-

ogy across different industries as a determinant of technological performance. Technological distribution

pertains to the scale of expansion in patent applications to various technology fields. Our empirical

specification in Eqs. (3) and (4) accounts for technological distribution using the variable DIVc,t , which

is defined as:

DIVc,t =
1∑

j

(
Cc,j,t∑
j Cc,j,t

)2 , (7)

where Cc,j,t is the count of blockchain patent families in country c within technology field j during period

t. A high value ofDIVc,t implies that country c has a blockchain technological portfolio distributed almost

evenly across many technical fields. The minimum value of DIVc,t is capped at 1, which occurs when

all of the country c’s patents belong to a single technical field. Fig. 11 visualises the correlation between

the country-level diversity, density and GDP per capita averages. Generally, countries with a high level

of equitable blockchain technological distribution witness high blockchain technological density, while no

discernible pattern is associated with GDP per capita. This reflects a positive relationship between the

diversity of blockchain innovation and inter-technological connectivity in its applications, regardless of

economic performance.

The effect of DIVc,t on blockchain technology specialisation may not be linear. On the one hand,

a diverse and balanced technology portfolio implies great potential to expand innovation capabilities in

more fields. On the other hand, not strategically dedicating resources to a few potential technologies

could hinder the country from establishing its comparative advantages. To account for a possible non-

linear association, DIV ×DIV is also included as an explanatory variable in Eqs. (3) and (4).

Other control variables.

• ITCj ,t refers to the Index of Technological Complexity. This variable quantifies the average ubiquity

of the technology field j across all blockchain inventor countries.1 A high ITCj ,t implies that the

technology field j has a high geographical concentration among a few countries , suggesting that a

high entry barrier exists for most countries in the technical field j in period t.

• logSizej,t is the log of the number of blockchain patent families in the technical field j during

period t. This variable accounts for the time-varying volume of blockchain patents in different

technical fields.

1See Appendix Appendix A for the construction of ITCj ,t .
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Figure 11: The relationship between average GDP Per Capitac,t, average DIVc,t and average Densityc,j ,t

• HIj,t corresponds to the Herfindhal index that measures the degree of geographical concentration

of blockchain patent families within each technical field. HIj,t is defined by:

HIj,t =
∑
c

(
Cc,j,t∑
j Cc,j,t

)2

(8)

• logGDP Per Capitac,t controls for the country-level economic development in each period. A

stronger economy provides solid financial foundations and motivations for technological innovation.

Table 1 shows the summary statistics of all the variables.

Table 1: Summary statistics

N Mean Min p25 p50 p75 Max SD

RTA 18060 0.41 0 0.00 0.00 0.00 1054.45 9.17
Density 18060 0.10 0 0.00 0.00 0.08 1 0.21
Log Size 18060 1.62 0 0.00 0.70 2.36 8.33 2.13
ITC 18060 11.61 0 0.00 15.23 18.68 18.86 7.99
HI 18060 0.36 0 0.00 0.28 0.57 1 0.35
DIV 10885 2.39 1 1.85 2.50 2.94 5.26 0.71
GDP 18060 9.55 5.74 8.74 9.67 10.65 11.67 1.24

Fixed effects. δc, γj and λt control for country, tech-field and year fixed effects, respectively.
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4. Results

4.1. Baseline results

Table 2: Regression Results

(1) (2) (3)
Diversification (ST) Diversification (MT) Specialization

DIV 1.031∗∗∗ 0.596∗∗ 2.388∗∗∗

(0.350) (0.298) (0.357)

DIV ×DIV −0.104 −0.0324 −0.173∗∗∗

(0.0640) (0.0564) (0.0542)

Density −5.798∗ 0.727 0.0569
(3.435) (1.055) (0.120)

Log Size 0.297∗∗∗ 0.172∗∗ 0.546∗∗∗

(0.101) (0.0867) (0.0980)

Herfindahl Index −1.268∗∗∗ −1.030∗∗∗ 0.878
(0.217) (0.180) (0.642)

ITC 0.365∗∗∗ 0.291∗∗∗ 0.230∗∗∗

(0.120) (0.0471) (0.0192)

Log Size ×DIV −0.186∗∗∗

(0.0200)

Herfindahl Index ×DIV −0.666∗∗∗

(0.219)

Density ×GDP 0.402 −0.0707
(0.336) (0.103)

GDP −1.871∗∗∗ −1.037∗

(0.619) (0.531)

Observations 8576 8798 9660
Pseudo R-squared 0.428 0.415 0.429

Standard errors in parentheses after accounting for country, year, tech-field fixed effects.
∗p < 0.1,∗∗ p < 0.05,∗∗∗ p < 0.01

Table 2 shows the baseline results. Columns (1) and (2) report the estimation results with the

probability of short-term and medium-term blockchain diversification, respectively, as the dependent

variable. Column (3) shows the results with blockchain specialisation as the dependent variable. First,

we discuss the main variables of interest: DIV and Density. The DIV coefficient is positive and

statistically significant at 5% confidence interval in all the columns. This implies that countries with

blockchain patent families that are more evenly distributed across multiple technological fields are more

likely to specialise and diversify in blockchain technology. Although DIV ×DIV is negatively associated

with blockchain specialisation and diversification, the coefficient is statistically significant in the context
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of results on specialisation alone. This is consistent with the findings of Leten et al. (2007), which

shows that the probability of specializing in technology tends to increase as technology distribution

becomes more equitable but declines after the country has attained a wide portfolio of technological

innovations. Fig. 12, shows the relationship between the distribution of the country-level average of

blockchain technology distribution and the predicted probability of specialising in blockchain technology

using the estimation results of Eq. (4). The marginal effect of the blockchain distribution variable

on specialisation increases initially as the value of DIV increases and starts to decline beyond a DIV

threshold.

The results also show that Density is not an economically significant determinant of blockchain tech-

nology performance.2 This contrasts with findings by Petralia et al. (2017); Perruchas et al. (2020) who

highlights the role of technological density in explaining technological specialisation and diversification.

We attribute our contradictory results to the limited application of blockchain technology across multi-

ple technical fields, and the relatively short time period since the introduction of blockchain technology.

More than a quarter of the blockchain innovations are in the EE field. Also, since the application of

blockchain technology is nascent, the time period is not adequately long enough for technological density

to emerge as a key determinant of blockchain diversification or specialization.

The results in Table 2 indicate that Herfindahl index, ITC and Log Size as important deter-

minants of blockchain technology performance. The statistically significant and negative coefficient of

Herfindahl index in columns (1) - (2) indicates that countries with a smaller concentration of blockchain

patenting activity are more likely to engage in blockchain technology diversification, both in the short

and medium term. In contrast, Herfindahl index is not an economically significant determinant of

blockchain technology specialisation. Next, the positive and significant ITC coefficient across all three

columns implies that technical fields with more entry barriers are likely to witness more blockchain diver-

sification and specialisation. Finally, we also find the existing volume of blockchain patents, Log Size,

as a positive and statistically significant determinant of the likelihood of blockchain specialisation and

specialisation.

The results in column (3) show that the coefficients of the interaction terms Log Size × DIV and

Herfindahl index×DIV are negative and significant. This implies that a larger volume of blockchain

applications in the same field or a higher concentration of blockchain patenting activity weakens the

effect of DIV on blockchain technology specialisation. Thus, although Herfindahl index by itself is

not a significant determinant of blockchain technology specialisation, it impacts the effect of DIV on

the specialisation probability. Figs. 13a and 13b shows the visualisation of the results with darker blue

regions corresponding to a higher predicted probability of blockchain specialisation. We can infer from

the darker regions that countries with more equitable distribution of blockchain technology applications

across technical fields (larger values of DIV ) are more likely to achieve specialisation in technical fields

with smaller blockchain patent activity volume (Log Size) or smaller entry barriers (Herfindahl index).

The GDP coefficient in Table 2 is negative and significant. This could be explained by the inclination

of low-income countries to embrace blockchain technology due to socioeconomic needs and technological

opportunities. For example, a significant proportion of the population in low-income countries is un-

banked, largely due to inadequate traditional banking infrastructure, trust issues, or prohibitive costs.

With its decentralized nature, blockchain offers promising solutions such as decentralized finance (DeFi)

for financial inclusion. Additionally, these countries often rely heavily on cross-border remittances, a

2The coefficient is marginally significant and negative in the case of short-term blockchain diversification.
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Note: The predicted probabilities are based on column (3) from Table 2. Predictions are obtained by varying DIVc,t of
each record in the original sample from the minimum (1) to the maximum value (6.25) and then fitting the adjusted sample
to the regression result from specialisation model in column (3) of Table 2 to compute the average of marginal effects at
each level of DIVc,t .

Figure 12: Adjusted predictions of RTA > 1 for different levels of DIVc,t (with 95% CI) - Specialisation

system currently bogged down by inefficiencies and high costs. Blockchain provides a more affordable,

transparent, and swift method for transnational money transfers, making it an attractive alternative

for streamlining remittances. Another compelling factor is the concept of “leapfrogging”. Similar to

how several low-income nations transitioned directly to mobile phones, bypassing the era of landlines,

they now have the potential to leapfrog over traditional financial infrastructures in favour of advanced,

blockchain-based systems. This propensity is further intensified in regions experiencing economic volatil-

ity, hyperinflation, or a generalized distrust in centralized institutions, where decentralized blockchain

solutions appear as stable alternatives.

4.2. Front runners in blockchain specialisation

Section 2 discussed the concentration of blockchain patents among a few countries. This section

investigates the disparities in blockchain technology specialisation between the top innovator countries

and the remaining countries in our sample. Towards this objective, we revise Eq. (4) to:

P (Scjt = 1) = Φ(θ0 + θ1Densityc,j,t−1 + θ2DIVc,t + θ3DIV 2
c,t + θ4HIj ,t + θ5 log Sizej ,t + θ6ITCj ,t

+ θ7Top12Ctry +

2020∑
s=2017

θ8,sY ears +

2020∑
s=2017

θ9,sY ears × Top12Ctry + γj + ϵcjt) (9)

where Top12Ctry is a binary variable that takes the value 1 if the country c belongs to the cohort of

the top twelve innovator countries with the most number of patent families during the year 2020 and

0, otherwise. θ7 indicates the blockchain technology specialisation gap between the top 12 innovator

countries and the remaining countries in the sample. Y ears is a binary variable that takes the value 1

for the year s and 0, otherwise. Table 3 showcases the estimation results. The positive and statistically

significant Top12Ctry coefficient indicates that the top 12 innovator countries are, on average, more likely

to specialise in blockchain technology as compared to the remaining countries. Additionally, the positive
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(a) Log Size (b) HI
Note: The predicted probabilities are based on column (3) from Table 2. To read the contour graph, we first fix a certain
level of one dimension and observe how the adjusted prediction changes with the values of another dimension. For instance,
in Fig. 13a, when keeping DIVc,t at a low level, the higher the logSizejt, the more likely the country achieves technological
advantages. However, for countries with highly diverse and well-balanced blockchain patent portfolios, the positive impact
of large patent volumes disappears.

Figure 13: Adjusted predictions of RTA > 1 for different levels of DIVc,t , logSizec,t and ITCj ,t -
Specialisation

and statistically significant interaction coefficients show that such a blockchain technology performance

gap persists over time.

Using the results from Table 3, we estimate and visualise the predicted probability of blockchain

technology specialisation in Fig. 14.The red and blue lines show the time trends in the predicted prob-

ability of blockchain specialisation of the top 12 and the remaining innovator countries, respectively.

In line with our expectations, we find a performance gap in blockchain technology specialisation, with

the top 12 innovator countries surpassing that of the remaining countries. We also find the blockchain

performance gap as widening over time.

With evidence that the blockchain technology specialisation performance of the top 12 innovator

countries exceeds the remaining countries, we next evaluate the country-level performance. We repeat

the baseline estimation (see Eq. (4)) separately for the top 12 innovator countries.3 Using the estimation

results, Fig. 15 visualises the predicted probability of blockchain technology specialisation for each of

the top 12 innovator countries. We find wide disparities in the blockchain technology performance even

within the top 12 innovator countries sample, with the United States leading in blockchain specialisation,

followed by South Korea, Japan and Germany.

Cryptocurrency boom. There is a widespread belief that the year 2017 was a crucial time period for

blockchain as the total market capitalization of major cryptocurrencies increased by a whopping 3200%

during this period (Fry, 2018; Cross et al., 2021). The stylised facts in Fig. 3 also reveal that blockchain

innovations largely started to pick up after 2017 post the cryptocurrency market boom. To identify the

country-level performance of the top 12 innovator countries before and after the cryptocurrency boom,

we again estimate the baseline model using the sub-sample of the top 12 innovator countries, albeit

separately for the periods 2015-2017 and 2018-2020.4 Using the estimation results, Fig. 16 shows the

country-level blockchain technology performance before and after the 2017 cryptocurrency boom. In line

with our expectations, we find that the disparities in the country-level blockchain technology performance

3Column (1) in Table B2 reports the estimation results.
4Columns (2)-(3) in Table B2 reports the estimation results.
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Table 3: Front runners in blockchain speciali-
sation

Specialisation

Top12Ctry 0.300∗∗

(0.152)

Y ear = 2017 −0.800∗∗∗

(0.147)

Y ear = 2018 −1.590∗∗∗

(0.205)

Y ear = 2019 −1.547∗∗∗

(0.201)

Y ear = 2020 −1.357∗∗∗

(0.192)

Top12Ctry × Y ear = 2017 0.332∗

(0.198)

Top12Ctry × Y ear = 2018 0.362∗∗

(0.182)

Top12Ctry × Y ear = 2019 0.359∗∗

(0.180)

Top12Ctry × Y ear = 2020 0.290
(0.178)

Controls Yes
Observations 9660
Pseudo R-squared 0.397

Standard errors in parentheses after account-
ing for tech-field fixed effects.
∗p < 0.1,∗∗ p < 0.05,∗∗∗ p < 0.01
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Note: This graph is based on the full-sample regression result of Eq. (9). The predicted probabilities are obtained by:
first, restricting the sample to each year; second, fitting the model using observations in the original sample, with all other
independent variables kept as observed, but treating all observations to be either in the “Top 12 Countries” group or in
the “Others” group. Finally, the averages of marginal effects within both groups are calculated. Top 12 countries are those
with the most number of patent families in 2020, including (1) China, (2) US, (3) South Korea, (4) India, (5) UK, (6)
Germany, (7) Japan, (8) Canada, (9) Israel, (10) Singapore, (11) France, (12) Switzerland.

Figure 14: Adjusted predictions of RTA > 1 (with 95% CI)

largely started to emerge after the cryptocurrency boom. The predicted probabilities of blockchain

technology specialisation spiked and became economically significant in countries like the United States,

South Korea, Japan and Germany in the latter period. This result highlight the importance of the 2017

cryptocurrency boom as a catalyst event in the blockchain technology specialisation capabilities of the

top 12 innovator countries.

Note: This graph is based on the regression result of column (1) of Table B2. The predicted probabilities are obtained
by: first, restricting the sample to country; second, fitting the model with the country-level means of all the independent
variables; finally, the averages of marginal effects at means within each country are calculated.

Figure 15: Adjusted predictions of RTA > 1 at the means of covariates for each country (with 95% CI)
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(a) 2015-2017 (b) 2018-2020

Note: The predicted probabilities are based on columns (2) and (3) from Table B2.

Figure 16: Adjusted predictions of RTA > 1 at the means of covariates for each country (with 95% CI)

Regulations. Policymakers are increasingly concerned about the risks posed by cryptocurrencies, with

regulatory frameworks continuously evolving to mitigate the risks. Cryptocurrency regulations could also

have implications for blockchain innovation performance. We analyse the impact of the cryptocurrency

regulatory framework on blockchain technology specialisation using cryptocurrency regulation data from

Finder.5

Broadly, the country-level cryptocurrency regulatory framework is classified into five levels by the

degree of stringency: level 1 - explicit ban, level 2 - implicit ban, level 3 - significant concerns or restric-

tions, level 4 - mostly legal investment and level 5 - legal tender. The ordering of the levels is inversely

related to the stringency. For example, level 1 - explicit ban is the most stringent, with cryptocurrency

entirely banned. On the other hand, level 2 is the least stringent and considers cryptocurrency as legal

tender. As per our data, the top 12 innovators follow level 1, level 3 or level 4. Using this framework,

Fig. 17 shows the nature of cryptocurrency regulations worldwide.

Source: Corva (2023).

Figure 17: Cryptocurrency regulations worldwide

To assess the impact of the regulatory framework on blockchain technology specialisation performance

5See https://www.finder.com/.
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of the top 12 innovator countries, we revise the baseline model in Eq. (4) to:

P (Sc,j,t = 1) = Φ
(
θ0 + θ1Significant concerns or restrictionsc,t + θ2Mostly legal investmentc,t

+θ3Densityc,j,t−1 + θ4DIVc,t + θ5DIV 2
c,t + θ6 log Sizej ,t + θ7HIj ,t + θ8ITCj ,t + θ9 log Sizej ,t ×DIVc,t

+θ10HIj ,t ×DIVc,t + δc + γj + λt + ϵcjt) , (10)

where Significant concerns or restrictionsc,t and Mostly legal investmentc,t are binary variables which

take the value 1 if country c’s cryptocurrency regulatory framework is level 3 and level 4, respectively

in year t. Otherwise, both these variables take the value 0. Coefficients θ1 and θ2 indicate the gap in

the blockchain technology specialisation likelihood between countries with less stringent cryptocurrency

regulations at level 3 and level 4, respectively, as compared to the benchmark of the more stringent

cryptocurrency regulatory framework at level 1. A finding of θ1 > 0 or θ2 > 0 indicates that blockchain

technology specialisation is more likely in countries with less stringency cryptocurrency regulations. Col-

umn (1) in Table 4 shows the estimation results. Although the coefficients of the regulatory measures

are negative, we find Mostly legal investment coefficient alone to be marginally significant. Since our

earlier results highlight the period post-2017 as mostly explaining the blockchain technology perfor-

mance of the top 12 innovator countries, we repeat the estimation using the sub-sample of the top 12

innovator countries for the period 2018 to 2020. The positive and statistically significant coefficients of

Significant concerns or restrictions and Mostly legal investment in column (2) indicate that the top 12

innovator countries with less stringent cryptocurrency regulation are more likely, on average, to specialise

in blockchain technology when compared to the top innovators with the most stringent cryptocurrency

regulatory framework after the cryptocurrency boom.
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Table 4: Effects of regulation on blockchain specialisation of Top 12
innovator countries

(1) (2)
Specialisation Specialisation

2018-2020

Significant concerns or restrictions −0.0573 0.656∗∗∗

(0.414) (0.240)

Mostly legal investment −0.874∗ 0.749∗∗∗

(0.495) (0.227)

Density 0.473∗∗∗ 0.561∗∗∗

(0.163) (0.194)

DIV 3.369 4.411
(2.312) (3.103)

DIV ×DIV −0.316 −0.410
(0.376) (0.504)

Log Size 0.544∗ 0.432
(0.212) (0.271)

Herfindahl Index 1.701 2.966
(1.547) (2.049)

ITC 0.249∗∗∗ 0.334∗∗∗

(0.0246) (0.0223)

Log Size ×DIV −0.161∗∗∗ −0.178∗∗

(0.0604) (0.0697)

Herfindahl Index ×DIV −0.873∗ −1.377∗∗

(0.518) (0.658)

Observations 2100 1260
Pseudo R-squared 0.329 0.296

Standard errors in parentheses after accounting for country, year, tech-
field fixed effects.
∗p < 0.1,∗∗ p < 0.05,∗∗∗ p < 0.01
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5. Conclusion

This study leverages patent data extracted from the PATSTAT database spanning the years 2015 to

2021 to provide a comprehensive exploration into the spatial dynamics and determinants that underpin

recent developments in blockchain technology. Combined with the measurement of technological density,

national income level, existing technology complexity, and diversity, we uncover pivotal insights that

collectively contribute to an enriched understanding of the dynamic landscape of blockchain innovation.

Firstly, a noteworthy deviation from conventional patterns in technology development is observed, as

lower-income countries display a robust inclination towards blockchain innovation. This unexpected trend

suggests a global impetus towards embracing blockchain solutions that transcends traditional economic

boundaries, ushering in a new era of inclusive technological adoption.

Secondly, the impact of the 2017 cryptocurrency bubble emerges as a significant catalyst, instigating

heightened enthusiasm and increased research activities within the realm of blockchain advancements.

This temporal influence underscores the dynamic and responsive nature of blockchain innovation, show-

casing its adaptability to external events that shape the technological landscape.

Thirdly, our findings unveil heterogeneous spillover effects in blockchain innovation, where leading

innovators not only influence their peer nations but also exert a discernible impact on the global land-

scape. This interconnectedness emphasizes the collaborative and transnational nature of blockchain

advancements, underscoring the importance of international cooperation in this domain.

Lastly, the regulatory environment surfaces as a pivotal determinant shaping the trajectory of blockchain

innovation. Nations with lenient cryptocurrency regulations exhibit a greater proclivity to foster advance-

ments in blockchain technology, while those enforcing strict bans encounter limitations. This underscores

the imperative need for a supportive regulatory framework to facilitate and propel innovation within the

blockchain space.

In essence, our research sheds light on the multifaceted nature of blockchain innovation, intricately

influenced by economic factors, historical events, and regulatory frameworks. As the blockchain landscape

continues its evolution, a nuanced understanding of these dynamics becomes imperative for policymakers,

businesses, and researchers alike, enabling them to navigate the intricate and interconnected realm of

emerging technologies.
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Appendix A. Detailed method for calculating ITC

We follow Hidalgo and Hausmann (2009)’s method to calculate ITC. After obtaining the country-

technical field-time level RTA, we construct a country-technical field matrix as depicted in Fig. A1 for

each year. Each cell Mc,j in this matrix represents the value of Sc,j at year t. For example, in the first

row of the matrix, a value of “1” indicates that Country A is specialized in technical fields 1 and 3,

while a “0” suggests that Country A is not specialized in technical field 2. Therefore, the row sum of

each country’s output
∑

j Mc,j signifies the “diversity” of its technology portfolio. A high value indicates

the country specialises in many technical fields which blockchain has . On the other hand, the column

sum
∑

c Mc,j denotes the “ubiquity” of a specific technical field. The high complexity of technology

can be reflected by its low ubiquity since fewer countries have the required innovation capability to

specialise in this field. Generally speaking, a more innovative country is likely to possess a more complex

Figure A1: Sample country-technical field matrix

technology portfolio consisting of more exclusive innovations. Similarly, non-ubiquitous innovations tend

to be sourced from relatively few countries with superior productivity. In this way, we can infer the

average diversity of countries’ innovation outcomes and the ubiquity of all technical fields by employing

an iterative process called the Method of Reflections. As Eq. (A1) show, the iteration starts with simple

row and column summation (kc,0 and kj,1) and continues until the rankings of countries and technical

fields stabilize. As such, kc,0, kj,1, kc,2, · · ·, kj,2n−1, kc,2n are used to measure the diversity of countries’

technology portfolios, and kj,0, kc,1, kj,2, · · ·, kc,2n−1, kj,2n are used to measure the ubiquity of specific

technical fields (Hidalgo and Hausmann, 2009). We define kj,2n, the maximum number of iterations, as

the Index of Technological Complexity (ITC). A higher ITC indicates a lower average ubiquity of the

technological fields in which less countries specialise.

kc,0 =
∑
j

Mc,j

kj,0 =
∑
c

Mc,j

kc,n =
1

kc,0

∑
j

Mc,jkj,n−1

kj,n =
1

kj,0

∑
c

Mc,jkc,n−1

(A1)
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Appendix B. Tables

Table B1: Correlation coefficient matrix

RTA Density Log Size ITC HI DIV GDP

RTA 1.000
Density 0.145 1.000
Log Size 0.020 0.682 1.000
ITC 0.031 0.359 0.484 1.000
HI 0.008 0.002 -0.043 0.617 1.000
DIV 0.028 0.263 0.025 0.060 0.013 1.000
GDP 0.003 0.102 -0.010 -0.028 -0.010 0.222 1.000
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Table B2: Sub-sample regressions using baseline model with top 12 innovator
countries

(1) (2) (3)
Specialisation Specialisation Specialisation

2015-2017 2018-2020

Density 0.498∗∗∗ 0.399 0.561∗∗∗

(0.162) (0.404) (0.194)

DIV 2.513 3.754 4.411
(2.036) (5.238) (3.103)

DIV ×DIV −0.170 −0.516 −0.410
(0.334) (0.838) (0.504)

Log Size 0.543∗ 0.497 0.432
(0.212) (0.555) (0.271)

Herfindahl Index 1.479 −2.131 2.966
(1.551) (3.072) (2.049)

ITC 0.242∗∗∗ 0.854 0.334∗∗∗

(0.0235) (0.965) (0.0222)

Log Size ×DIV −0.159∗∗∗ −0.187 −0.178∗∗

(0.0601) (0.142) (0.0697)

Herfindahl Index ×DIV −0.794 0.0621 −1.377∗∗

(0.519) (1.017) (0.658)

Observations 2100 624 1260
Pseudo R-squared 0.323 0.356 0.296

Standard errors in parentheses after accounting for country, year, tech-field
fixed effects.
∗p < 0.1,∗∗ p < 0.05,∗∗∗ p < 0.01
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