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This paper develops a multi-sector endogenous growth model which embeds a

technology network that captures heterogeneous intersectoral knowledge spillovers.

Each sector serves both as a distributor and a producer of knowledge. The interac-

tion of these two forces influences long-run economic growth, sectoral shares and

the firm size distribution. The sparsity of the network imposes an upper bound on

the impact of knowledge spillovers. In this model, sectors converge to the same

growth rate if they belong to the same irreducible network. However, their contri-

butions to economic growth differ substantially, depending on their positions in the

technology network and their efficiency in conducting innovation. Consequently,

the model has implications for identifying key sectors in the economy. The gain in

economic growth derived from promoting innovation in the sector that utilizes and

spreads knowledge most efficiently is over 10,000 times larger than gain derived

from promoting innovation in the least efficient sector.
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1. INTRODUCTION

How does innovation in one sector depend on innovation in other sectors? How much
does each sector contribute to economic growth? What determines the difference of
their contributions? These questions are what this paper attempts to address. A better
understanding of these questions is not only theoretically interesting but also of polit-
ical relevance, given that many governments have tried to implement sector-oriented
policies in order to stimulate economic growth. For example, the Chinese government
proposed to invest more than 161 billion dollars over 10 years to develop the semicon-
ductor industry in 2015. Singapore and South Korea both developed policies to direct
resources towards certain sectors in their early stage of development. Evaluations of
these policies involve understanding whether sector-specific policies have impacts be-
yond the sectors they target, which depends critically on how sectors interact with each
other. In this paper, we approach these questions by studying the role of intersectoral
knowledge spillovers in shaping firms’ innovation behavior across sectors. Knowledge
spillovers have long been recognized as an important source of economic growth. How-
ever, the past literature tends to focus on either a representative sector that captures the
whole economy or a multi-sector economy that shows no cross-sector interdependency.1

These features make the previous studies silent on questions that we are interested in
here. To bridge this gap, this paper aims to build an endogenous growth model with a
technology network that captures heterogeneous intersectoral technology dependence.
Our model reveals the importance of the network structure, which captures both the
existence and the strength of intersectoral knowledge spillovers, in answering the ques-
tions raised at the beginning.

To give some idea about the aforementioned technology network, we provide an
example of an economy represented by a technology network, which is constructed
from patent citations, in Figure 1.2 In the graph, each node is a sector in the economy
and each edge implies the existence of a technology connection between sectors.3 The
thickness of an edge captures the strength of knowledge flows from one sector to an-
other. The size of each node represents the strength of aggregate outward knowledge
flows, measured by the cross-sector backward citation ratio.

Three features of Figure 1 are noteworthy. First, the strength of knowledge spillovers
differs across sector pairs, as shown by the different thickness of the edges. Second, for

1The only exception is Cai and Li (2012), where the authors construct an innovation model, which
takes into account cross-sector knowledge connections, and try to explain firms’ research patterns.

2The patent citation data is from US Patent and Trademark Office and will be discussed in detail
shortly. The figure is drawn using all citation data available in the dataset between 1975 and 2006 .

3The definition of sectors here follows Hall et al. (2001), who assign all patents to 37 sectors.
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a given sector pair, the knowledge spillover from one sector to the other is not the same
as the spillover in the other direction, which implies that the network is asymmetric.
Finally, knowledge spillovers do not exist among some sector pairs, which is reflected
in the sparsity of the network. The above features all point to sector-pair-specific het-
erogeneity, one dimension of heterogeneity which is of interest in this paper.

FIGURE 1
A TECHNOLOGY NETWORK REPRESENTATION OF ECONOMY

To further appreciate the magnitude of intersectoral knowledge flows, Figure 2
shows the kernel density of cross-sector citation ratios corresponding to the sectors
in Figure 1. The horizontal axis measures the ratio of a sector’s intersectoral citations
over its total citations, while the vertical axis records the kernel density estimate, using
a bandwidth of 0.02.4 It is clear that cross-sector knowledge spillovers play a non-trivial
role in the knowledge accumulation of all sectors, contributing from 17% to about 67%
of knowledge flows with a mean of 39%.5

The importance of the technology network for innovation is substantiated by empir-
ical evidence obtained from firm level data in this paper. First, intersectoral knowledge
spillovers help firms to enter new sectors where they have a comparative technology

4The intersectoral citations are calculated from all the other sectors to a given sector. The bandwidth
is chosen to produce a smooth kernel curve.

5Note that these values are calculated for 2-digit sectors.
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advantage. We refer to this as the “pro-entry effect”. Second, intersectoral knowl-
edge spillovers are positively correlated with the accumulation of new patents, which
we denote the “pro-innovation effect”. The pro-innovation effect implies that a firm’s
knowledge accumulation in one sector will contribute to its innovation in another sector
if there are knowledge spillovers from the former to the latter. These two empirical ob-
servations highlight both the extensive and intensive margins of knowledge spillovers.
Last, we show that the pro-innovation effect is universal over all sectors, although the
magnitudes differ substantially. This result indicates that firms in different sectors have
heterogeneous efficiency in utilizing knowledge from other sectors.

FIGURE 2
CROSS SECTOR CITATION RATIO

These empirical findings highlight the important role of intersectoral knowledge
spillovers in affecting the knowledge accumulation. However, one critical question
remains unaddressed: how do the interactions between sectors affect growth at both
the sector level and the aggregate level. To answer this question, we build a theoreti-
cal model, which allows firms to endogenously choose their innovation efforts across
sectors, taking into account heterogeneous intersectoral knowledge spillover effects.
The intersectoral knowledge spillover is an important feature, which determines the
potential benefit of knowledge accumulation on cross-sector innovation. Motivated by
the empirical analysis, we will assume that the technology network, which contains
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pair-wise knowledge spillovers for all sectors in the economy, is asymmetric and non-
complete. The structure of the network is exogenous for individual firms.

Given the central role played by the technology network in our model, it is straight-
forward to note that different network structures have a significant impact on firms’
cross-sector knowledge accumulation. To examine this impact, we study two types of
networks in this paper: an irreducible network and a reducible network. The former
represents an economy where each sector has knowledge spillovers to all the other sec-
tors either directly or indirectly. In such an economy, knowledge spillovers display
a global impact, which implies that knowledge accumulation in any sector will benefit
the whole economy eventually. In contrast, an economy denoted by a reducible network
can be thought of as a collection of multiple technology clusters. In this case, knowl-
edge spillovers only exist among sectors within each technology cluster but not across
clusters. The difference between the reducible and irreducible networks is determined
by the sparseness of the network. When the network is sufficiently sparse, it becomes a
reducible network.

In the benchmark case of the irreducible network, firms choose the sector-specific
innovation rate, which depends on the average profitability of conducting innovation
and the option value of research in a sector. Despite different innovation rates across
sectors, in the long run, all sectors converge to the same growth rate due to the ex-
istence of global knowledge spillovers. However, different sectors contribute to eco-
nomic growth differently, depending on their innovation capacities and their positions
in the technology network to distribute knowledge. The interaction of these two forces
determines long-run growth. In particular, the long-run growth rate is equal to the dom-
inant eigenvalue of a matrix, Φ, that reflects the above interaction. A modified version
of the matrix also determines the share of each sector. Specifically, we show that the
share of a sector is represented by the sector’s corresponding generalized eigenvector
centrality associated with a matrix, Ψ = Φ + I,6 which determines the dynamics of
the sector share evolution. The generalized eigenvector centrality of a sector captures
the sector’s position in the downstream technology network.7 A more central position
implies higher knowledge spillovers from other sectors and thus a larger sector share.
Lastly, the interaction of the intersectoral knowledge spillovers and heterogeneous sec-
toral innovation rates also plays a role in shaping the firm size distribution. The right
tail of the firm size distribution is shown to be a Pareto distribution, and the thickness

6I is an identity matrix.
7Eigenvector centrality is a measure of the importance of a node in a network. A higher score is

assigned to nodes with connections to high score nodes. Generalized eigenvector centrality used in this
paper takes into account the strength and the direction of each connection in addition to the number of
connections.
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of the tail is pinned down by the ratio of the population growth rate and the long-run
economic growth rate.

The previous theoretical results are established under the assumption that each sec-
tor displays global spillover effects. This assumption is relaxed when the network struc-
ture is assumed to be reducible. For a reducible network, the sectoral growth rate is
driven by the local network structure of technology clusters that each sector belongs to,
and the converging behavior of sectoral growth is limited only within each technology
cluster. As a result, different technology clusters demonstrate heterogeneous growth
and aggregate economic growth is determined by the cluster that grows fastest. Given
that sectors belong to different technology clusters may grow at different rates, their
shares diverge in the long run. Moreover, the firm size distribution is also technology
cluster specific. For firms that belong to different technology clusters, their size differ-
ence reflects the different growth potential of the corresponding technology cluster.

We apply our framework to identify key sectors in the economy. A sector is a key
sector if a small shock to the sector’s innovation rate can lead to a large spillover effect.
Many governments subsidize specific sectors to promote growth. Our analysis provides
potential guidance on such policies from the perspective of knowledge spillovers. We
find that there is substantial heterogeneity across sectors in terms of the induced im-
pacts of sectoral shocks. Specifically, a 1% increase of the innovation rate for the most
important sector can result in knowledge spillovers that are 10,000 times larger than in
the case of the least important sector.

The remainder of this paper is organized as follows. Section 2 reviews the past
literature. Section 3 presents the empirical motivation of this paper. The formal model
is developed in Section 4, while policy analyses are provided in Section 5. Section 6
concludes.

2. Related Literature

This paper contributes to several strands of literature. Among others, it is closely re-
lated to the literature that studies R&D via endogenous innovation.8 In particular, the
model is an extension of Klette and Kortum (2004). In their paper, firms engage in a
Schumpeterian-style innovation process and expand their products via a Poisson birth
and death process. New products arise at a rate that depends on the knowledge accu-
mulation embodied in past products, while some products of a firm are lost as a result
of competition from rivals making them obsolete. A large literature has subsequently

8See, for example,Romer (1986), Aghion and Howitt (1992), Aghion et al. (1997), Grossman and
Helpman (1991) and Kortum (1997).
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adapted their approach and applied it to different environments.9 A common feature
of these models is that innovation is undirected: that is, knowledge accumulation in
one sector will benefit innovation in other sectors equally. In contrast, we construct a
multi-sector model that focuses on the interdependency of sectors and allows for het-
erogeneous innovation rates. These new characteristics make it possible to think about
the linkage between individual sectors and the aggregate economy and to evaluate the
aggregate effects of industrial policies.

There is a large literature trying to model various networks existing in the economy.
Among them, Jackson and Rogers (2007) are the first to present a general model of
network formation in an attempt to explain the salient features of various networks
formed in the real world. They argue that nodes in a network form links with each other
either randomly or via local search using the existing network, the so-called meeting
friends of friends. The technology network in this paper shares the fundamental feature
of the social network in Jackson and Rogers (2007). Firms enter sectors where their
existing patent portfolios have strong knowledge spillovers and innovate intensively in
those sectors. This is similar to the local search in the social network.

Another strand of literature studies the size distribution of firms and cities. Luttmer
(2007, 2011) describes a balanced growth model that features a Pareto distribution of
firm size, which is consistent with the observed size distribution of U.S. firms’ employ-
ment. In a different context, Gabaix (1999) employs a model, underlying which is a
geometric Brownian motion with a reflecting barrier, to explain the city size distribu-
tion in the U.S.. The way in which these studies generate size differences is assuming
that entities experience random growth and have different sizes because of the realiza-
tion of different shocks.10 This paper provides an alternative way to think about the
firm size difference. In an economy represented by a sparse network, firms that belong
to different technology clusters have different growth potentials, which are reflected by
their sizes.

This paper is not the first attempt to incorporate networks into macro analysis. Ober-
field (2012) develops a model of a business network through which firms form produc-
tion chains and studies the endogenously emerging network. Cai and Li (2012) study
the impact of intersectoral knowledge linkages on firms’ innovation intensity and the
sequence of entry into different industries. My paper treats the technology network as
exogenous and explores how different structures of the network can affect economic
growth, sectoral shares and the firm size distribution.

9See, for example, Lentz and Mortensen (2005, 2008), Acemoglu et al. (2013) and Akcigit and Kerr
(ming)

10Gabaix (2009) surveys the theory and application of the power law in economics and finance.

7



Finally, this paper contributes to the literature on knowledge spillovers. Jaffe (1986)
constructs an empirical measure of technology spillovers to study the impact of the re-
search of neighbouring firms on the success of a firm’s R&D. He finds that high R&D
firms tend to reap the benefit of knowledge spillovers while firms with low R&D are
worse off. Bloom et al. (2013) study two types of spillovers: a positive technology
spillover effect from other research firms and a negative business stealing effect from
product market rivals. They employ and extend the measure of technology spillovers
from Jaffe (1986) and conclude that the positive knowledge spillover effect dominates
the negative business stealing effect.11 Acemoglu et al. (2016) map the upstream tech-
nology network and sectoral patent growth to predict future innovation after 1995 and
find strong predictive power at the sector level. My paper serves as the complement to
the previous studies by providing novel empirical evidence of intersectoral knowledge
spillovers at the firm level and new theoretical insights on the importance of intersec-
toral technological linkages.

3. EMPIRICAL EVIDENCE OF TECHNOLOGY
NETWORK

In this section, we present evidence on the spillover effects of firms’ past knowledge
accumulation on future innovation. We ask three questions here: (i) Does a firm’s
existing patent portfolio affect its entry to a new sector in the future? (ii) Does a firm’s
current patent accumulation in a sector depends on its past patent accumulation in other
sectors? and (iii) If so, how does this relationship vary across sectors? The first two
questions present two margins of spillover effects: the former is what we term the pro-
entry effect, which is intended to capture the extensive margin of knowledge spillover
effects in expanding firms’ patent portfolios. The latter is the pro-innovation effect.
The pro-innovation effect captures whether past knowledge accumulation in one sector
helps to promote innovation in technologically related sectors, representing an intensive
margin of knowledge spillover effects. The third question deals with the heterogeneity
of the efficiency of different sectors in absorbing and applying intersectoral knowledge.

The backbone for our analysis here is the NBER Patent Database from the United

11There is a large amount of research in the IO literature that studies the external knowledge spillover
between firms and their competition in the product market. A short list includes: D’Aspremont and
Jacquemin (1988), Suzumura (1992),Amir and Wooders (1999),Anbarci et al. (2002) and Erkal and
Piccinin (2010). My paper abstracts away from product market competition and external knowledge
spillovers, and instead focuses on the internal knowledge spillovers. This feature makes my model
tractable and renders the relationship between the network structure and the economic growth trans-
parent.
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States Patent and Trademark Office (USPTO) from 1975 to 2006. The dataset contains
patent records that provide information on the unique assignee number of the inventor
of each patent, the country the assignees belong to, the date each patent is applied for
and granted as well as the technology sector each patent belongs to, etc. We use the field
classification proposed by Hall et al. (2001), who assign all patents into 37 technology
sectors. Details of how each sector is defined can be found in Hall et al. (2001). Here,
for convenience, we label each technology sector by a number from 1 to 37. TABLE A.1
in the Appendix shows the correspondence between the numeric label and the original
field. We only use patents granted to U.S. companies and drop observations for which
the assignees are missing. The patent database contains an associated dataset upon the
citing-cited relationship of patents. The citation data will be critical for us to empirically
construct the technology network that captures the strength of knowledge flows across
sectors. Estimations in this paper will be based on the data between 1990 and 2001.
The 2001 end date is chosen to allow for a 5-year window for patent reviews. The 1990
start date allows enough pre-sample data to implement the empirical strategy that will
be discussed in detail later. Estimations extending the range of data deliver qualitatively
same results.

To address the first question, some idea about how close two technologies are, or
more precisely, how easily certain technology can be applied to others is required.
Therefore, we introduce a measure of technology applicability based on the patent cita-
tion data. A citation may serve as an indicator of knowledge spillovers. For instance, if
patent A cites patent B, then the implication is that knowledge flows from B to A. My
measure of technology applicability from sector y to x, g(y, x), is constructed using the
following formula:

g(y, x) =
N(citation from x to y)

N(total citation to y)
. (1)

This measure is sector-pair specific and can be interpreted as the average spillover effect
from sector y to sector x. Using this measure, we can continue to construct the average
proximity between a firm’s current patent portfolio and any target technology sector.
The measure of average proximity is needed because firms can operate in multiple sec-
tors, and our first measure cannot account for this. We use the variable Mproximityx

f ,t

to denote the average proximity, and it is calculated as

∑
y∈{y 6=x}

nyf,t
nf,t

g(y, x),

where nyf,t is the patent stock for firm f at time t in sector y and nf,t is total patent
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stock at t.12 Note that the target sector x is excluded in the summation because we want
to analyze the intersectoral spillover effects. With the above measure, we run a Probit
regression over a firm’s probability of entering a given sector on its average proximity
to this sector:

Pr(yxf,t) = α1Mproximityxf,t−1 + α2Controls
x
f,t−1 + µxf + ϑt + ζx + εxf,t, (2)

where the dependent variable yxf,t is a dummy variable that takes the value of 1 if the
corresponding firm f produces patents in technology sector x at time t and zero other-
wise. We control for whether firm f has previously operated in the same sector, yxf,t−1,
as well as the total number of technology sectors firm f operates in at t − 1, Nf,t−1.
To deal with unobserved heterogeneity, it is assumed that the error term is composed of
µxf , a firm-sector fixed effect, a full set of year dummies, ϑt, sector dummies, ζx, and an
idiosyncratic component, εxf,t. We follow Wooldridge (2002) and instrument the unob-
served firm-sector fixed effect µxf with the time mean of all exogenous variables and the
initial value of the dependent variable yx0 . The key parameter that we are interested in
is α1, which captures the pro-entry effect. A positive α1 implies that a patent portfolio
that is more technically related to sector x contributes to the firm’s entry into sector x.

Estimation results are presented in TABLE 1. As shown in column (1), a firm is
more likely to enter a technology sector x when its patent portfolio contains technolo-
gies closer to that sector. The estimates remain significant after controlling for various
factors (column (2) to (4)). The additional control variables behave as we would expect.
In particular, a firm that currently owns patents in sector x is more likely to continue
innovation in the same sector (column(2)), and there is a higher probability that a firm
with a broad set of patents will expand into another sector (column(3)). The magni-
tude and significance of the above variables are largely unaffected by adding time and
sector dummies to the regression as shown in column (4). The regression results tak-
ing account of unobserved firm-sector fixed effects are provided in column (5). After
controlling for the unobserved firm-sector fixed effects, the coefficients of all controls
decline significantly with Mproximityx

f ,t being the only exception. In fact, the estimate
for Mproximityx

f ,t increases compared to its estimate in column (4), demonstrating the
robustness of our main results. Notice that in Probit regression, the estimates cannot be
directly interpreted. The only message that we can take away from the estimates is that
a positive estimate implies that a higher value of the examined variable leads to a higher
probability and vice versa.

We now turn to evaluate how much past knowledge accumulation contributes to the

12ny
f,t can be zero if firm f does not hold any patent in sector y at time t.
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TABLE 1
PROBIT REGRESSIONS

(1) (2) (3) (4) (5)

Mproximityx
f ,t−1 14.75*** 13.55*** 14.16*** 11.89*** 14.57***

yxf,t−1 2.17*** 1.98*** 1.90*** 1.62***

Nf,t−1 0.06*** 0.06*** 0.01***

Y earDummy No No No Yes Yes

SectorDummy No No No Yes Yes

Firm-sector FE No No No No Yes

Constant -1.66*** -2.08*** -2.25*** -2.65*** -2.80***

Observations 2,042,178 2,042,178 2,042,178 2,042,178 2,042,178
The variable Mproximityy,t−1 is constructed using the data at time t − 1. Firm-sector fixed
effect is instrumented using the method proposed by Wooldridge (2002). Standard errors are
included within the parenthesis. All standard errors are clustered standard errors at the firm
level. *, **, *** denotes 10%, 5% and 1% significance respectively.

.

building of new knowledge. We construct a new measure, Wpatentxf ,t , to capture the
weighted patent stock with the weights equal to g(y, x). Wpatentxf ,t for firm f at time
t with respect to sector x is defines as∑

y∈{y 6=x}

I(yf,t = 1)g(y, x)nyf,t,

where nyf,t is the patent stock for firm f in the technology class y at time t and I(yf,t =

1) is a dummy variable that takes the value of 1 if firm f does not hold a patent in
sector y, and 0 otherwise. This measure captures the intersectoral spillover effect of the
current patent portfolio with respect to sector x. Note that we do not include the patent
stock in x. We follow Hall et al. (2005) and construct the patent stock using a perpetual
inventory method with a 15% depreciation rate.13 That is, nyf,t = ∆nyf,t + (1− δ)nyf,t−1,
where ∆nyf,t is the number of new patents firm f produces in sector y at time t and
δ = 0.15. We then run the following Negative Binomial model:

PatentCountsxf,t = β1Wpatentxf,t−1 + β2 Controls
x
f,t−1 + µ̃xf + ϑ̃t + ζ̃x + ε̃xf,t (3)

13Hall et al. (2005) use R&D to calculate knowledge capital while we use patents here.
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where PatentCountsxf ,t represents the number of new patents produced by firm f in
technology sector x from time t−1 to time t and µ̃xf is the firm-sector fixed effect. ϑ̃t and
ζ̃x are sets of time dummies and sector dummies respectively. Due to the nonlinearity of
the Negative Binomial model, we follow Blundell et al. (1999) and use the pre-sample
mean scaling method to control for fixed effects. The idea is to use pre-sample data
on patenting behavior to instrument for unobserved heterogeneity. The long panel of
patent data from USPTO allows me to construct the pre-sample average between 1970
and 1989. The controls used here are the same as those in (2) except that we include a
dummy to indicate whether a firm previously innovates in the target sector and the lag
value of patent counts of the firm in the target sector.

The coefficient of interest is β1. A positive sign for this coefficient implies the ex-
istence of a pro-innovation effect. The estimates are shown in TABLE 2. From column
(1), it is clear that a firm’s production of new patents is positively related to the firm’s
past patent accumulation in other sectors. Adding variables that control for whether
firm f owns a patent and how many patents firm f owns decreases the coefficient for
Wpatentxf ,t (column 2). Nonetheless, the inclusion of further controls has little effect on
it (column (3) to (4)). Finally, in column (5), we demonstrate the results using the pre-
sample mean scaling method to control for the firm-sector fixed effect, which changes
neither the magnitude nor the significance of the estimate for the weighted patent stock
variable. As shown in column (5), past knowledge accumulation has a substantial effect
on the innovation of new patents. A 1% increase of the weighted patent stock leads to a
0.4% increase in the production of new patents.

The above analysis studies the average effect of intersectoral knowledge spillovers.
In the rest of this section, the focus will be on the heterogeneity of intersectoral knowl-
edge spillovers. To this end, we run the same regression as (3) but restrict the sample
to each sector instead of pooling all sectors together. The estimate β1 for each sector
can be interpreted as the average efficiency of firms in absorbing knowledge from other
sectors to their own sectors.

12



TABLE 2
NEGATIVE BINOMIAL REGRESSIONS

(1) (2) (3) (4) (5)

Wpatentxf,t−1 0.76*** 0.40*** 0.43*** 0.39*** 0.39***

I(xf,t−1 = 1) 2.87*** 2.88*** 2.82*** 2.66***

PatentCountsxf,t−1 0.06*** 0.06*** 0.06*** 0.04***

Nf,t−1 -0.02*** -0.01*** -0.01***

Y earDummy No No No Yes Yes

SectorDummy No No No Yes Yes

Firm-sector FE No No No No Yes

Constant -0.47*** -2.22*** -2.09*** -2.80*** -2.73***

lnα 2.20*** 0.73*** 0.72*** 0.72*** 0.55***

Observations 2,029,470 2,029,396 2,029,396 2,029,396 1,050,316

I(xf,t−1 = 1) is the indicator function that takes the value of 1 if firm f operates in sector
x at time t − 1 and 0 otherwise. Wpatentxf,t−1 is in log form to make the interpretation
more convenient. The firm-sector fixed effect is instrumented using the method proposed by
Blundell et al. (1999) and is reported in column (5). Standard errors are included within the
parenthesis. All standard errors are standard clustered errors at the firm level.

Each sector’s estimate with one standard error is displayed in FIGURE 3.14 There
is significant heterogeneity across sectors with the parameter estimates, ranging from
0.09 to 0.72 with a mean of approximately 0.3. The results reveal that intersectoral
knowledge spillovers contribute significantly to knowledge building for most sectors.
However, each sector’s ability to absorb and use knowledge to produce research output
differs substantially.

14Details of the regression results are shown in TABLE A.2 in the Appendix.
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FIGURE 3
ESTIMATES OF SECTOR INNOVATION INTENSITIES

To sum up, this section presents empirical evidence about the importance of inter-
sectoral knowledge spillovers on innovation at the firm level. In the next section, we
will build a model that embeds the features shown here. In particular, the model will
include two layers of heterogeneity: intersectoral knowledge spillovers and the sector-
specific innovation rate. The latter endogenously arises as the option value of research
is different across sectors.

4. THEORETICAL MODEL

4.1. Multi-sector Innovation Model with an Irreducible Technology
Network

There are a finite number of technology sectors in the economy. Each sector is a col-
lection of technologies that share similar features. Sectors differ in their technology
spillovers to other sectors. The heterogeneous sector-pair technology spillovers (edges)
along with all sectors (nodes) form a technology network. Formally, the technology
network is modeled as a M ×M weighted directed adjacency matrix G, where each
entry gij ≥ 0 denotes the knowledge flow from sector i to sector j, and M is the num-
ber of sectors. There are intersectoral technology spillovers from i to j if gij > 0.
The implications of different network structures will be explored here. As a benchmark
case, we will study an irreducible technology network, whose definition is formalized
as follows:

14



Definition 1. A network is irreducible if ∀i, j, there exists a sequence of indices l1, l2, · · · , ln
such that gil1gl1l2 · · · glnj > 0.

Loosely speaking, an irreducible technology network represents an economy where
all sectors have potential impacts on each other either directly or indirectly.

Entrepreneurs develop their knowledge portfolios based on their past knowledge
accumulation. The innovation activity is modeled as a Poisson process. A novel feature
is that old knowledge not only contributes to the building of new knowledge in the same
sector but also in other sectors. In other words, innovation in one sector demonstrates
both intrasectoral and intersectoral knowledge spillover effects. The strength of the
intersectoral knowledge spillover effects is captured by the off-diagonal elements of the
adjacency matrix G.

Incumbents use patents to store new knowledge. Each patent possesses some value
to the owner. We will assume that the value of patents is randomly distributed with
a sector-specific mean, π̄i. In general, the average value of a patent can be different
across sectors, meaning that π̄i 6= π̄j for i 6= j. There are several ways to interpret the
value of a patent. A firm can use its patent to design a new product, and thus enjoy
the monopoly profit of the product. Alternatively, a new patent may add value to a
firm’s current product and improve its quality. In an environment where quality matters
to consumers, the two can be equivalent. Here, we take the first interpretation. Now
assume that a firm at time t has ni patents in the technology sector i, and the associated
values of these patents are denoted by a vector π̃i = (πi1, πi2, · · · , πini). In addition, for
a firm with a total of n patents, the value of those patents is represented by a vector of
vectors π̃n = ({π̃i}i∈T ), where n =

∑
i∈T ni and T is the set of all sectors. Note that if

a firm does not have any patent in a certain sector s, then ns = 0.
Each firm can be regarded as a collection of research teams, each specializing in

a certain technology sector. Each research team pools knowledge of other teams to-
gether and devotes effort in order to produce new patents. However, knowledge from
different sectors will not contribute symmetrically to innovation. In particular, it is as-
sumed that 1 unit of knowledge stock (1 patent) in sector j will serve as gji units of
effective knowledge stock when used for innovation in sector i. Therefore, the total
effective knowledge stock in sector i for a firm with the patent portfolio specified above
is
∑

j∈T njgji. This term can be interpreted as total knowledge spillovers to sector i.
All firms have access to a common production technology that allows them to in-

novate at the rate λi per patent in sector i. The cost for a research team specializing
in sector I is assumed to be a function of the total innovation rate and the effective

15



knowledge stock, and takes the following form:

C
(
λi
∑
j∈T

njgji,
∑
j∈T

njgji

)
.

C(., .) is assumed to be homogeneous of degree one and increases with both arguments.
As a result, the cost function can be written as:

C =
∑
j∈T

njgjic(λi),

where the variable cost function is specified as follows:

c(λi) = λεiθ
1−ε, ε > 1. (4)

θ is a technology parameter which is constant across sectors. The assumption ε >

1 ensures that the cost function is a convex function of the flow innovation rate. In
addition, c(.) is assumed to be twice differentiable.

Given the previous setup, a firm takes as given its current portfolio of patents and
decides the optimal innovation rate for each sector by solving the following value func-
tion:

rV (π̃n)− V̇ (π̃n) = max
{λi}i∈T

{∑
i∈T

ni∑
s=1

πis −
∑
i∈T

c(λi)
∑
j∈T

njgji

+
∑
i∈T

λi
∑
j∈T

njgji(E[V (π̃n+1)|i]− V (π̃n)), (5)

where E[V (π̃n+1)|i] = E[V (π̃n ∪ πi(ni+1))] and r is the interest rate.
The first line on the right-hand side captures net flow profits generated by the firm’s

current patent portfolio over the total cost incurred for innovation. The second line
represents the expected change of the firm’s value resulting from the arrival of new
patents across sectors. The expected value change is the sum of all sectoral changes.
For a given sector, say i, in which the firm currently operate, λi

∑
j∈T njgji is the sector-

specific aggregate innovation rate, whileE[V (π̃n+1)|i]−V (π̃n) is the expected increase
in a firm’s value conditional on the arrival of a new patent in sector i.

The next proposition characterizes the solution to the value function and the associ-
ated optimal innovation choices.
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Proposition 1. The value function for the firm’s problem has a solution as follows:

V (π̃n) =
∑
i∈T

ni∑
s=1

πis
r

+
∑
j∈T

njRj, (6)

where (R1 · · ·RM) are the solutions to a system of M nonlinear equations:

rRj =
∑
i

θ(
π̄i
r

+Ri

ε
)

1
ε−1 gji[(1−

1

ε
)(
π̄i
r

+Ri)] ∀j ∈ T , (7)

and the optimal innovation choices are given by:

λi = θ(
π̄i
r

+Ri

ε
)

1
ε−1 . (8)

Proof. See Appendix.

From the proposition, we can see that the value function of a firm with a patent
portfolio π̃n is equal to the discounted additive sum of random profits generated from
the firm’s whole portfolio plus the aggregation of the sector-specific option value of
research,

∑
i niRi. It is interesting to note that the option value of research in each

sector is itself a function of the option value of research of all the other sectors. This
is an intrinsic feature of the model because each piece of knowledge created in one
sector will be useful for innovation in other sectors. They are interconnected with each
other through the channel of intersectoral knowledge spillovers, which is captured by
the off-diagonal elements in G. If we shut down the channel of intersectoral knowledge
spillovers, the option value of research for different sectors becomes independent of
each other.

The optimal innovation rate for each sector depends on both the average profit and
the research value of patents in the sector. A higher average profit or a higher option
value of research induces firms to increase their effort and thus results in a higher inno-
vation rate.

To complete our analysis, it is necessary to specify the entry of new firms. Suppose
that the population is growing at a constant rate η in the economy. There is a fixed
proportion of each generation that has the potential to become entrepreneurs. The pro-
portion of potential entrepreneurs is constant over time. As a result, the number of firms
grows at the same rate as the population. Further assume that for a firm to obtain an
entry rate of 1, it must pay a fixed cost f . We specify the following free entry condition:

E[V (π)] = f,
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where E[V (π)] is the expected value of an entrant. Upon entry, firms draw from a
common probability distribution function that determines which sector they will enter.
Specifically, let pi denote the probability of entering sector i. The expected value of an
entrant is therefore:

E[V (π)] =
∑
i

piV (πi).

The probability distribution function of entry is assumed to be exogenous. This as-
sumption is innocuous for the main results in this paper.

4.2. Dynamics of Firms’ Innovation

As shown in the previous section, for a firm with patent portfolio {ni,t}i∈T , the increase
of the patent stock in sector i for a small time interval ∆t is:

ni,t+∆t − ni,t = λi∆t
∑
j∈T

nj,t gji ∀i ∈ T (9)

where nit−nit+∆t is the accumulation of new patents in technology sector i for the time
interval ∆t. The above equation reveals that the evolution of a firm’s patent portfolio is
a nested function of the technology network and sectoral innovation rates. To see this,
rewrite equation (9) in matrix form:

n1,t+∆t − n1,t

n2,t+∆t − n2,t
...

nM,t+∆t − nM,t

 =


λ1g11 λ1g21 · · · λ1gM1

λ2g12 λ2g22 · · · λ2gM2
...

... . . . ...
λMg1M λMg2M · · · λMgMM




n1,t

n2,t
...

nM,t

∆t (10)

or more compactly in a continuous form:

ṅt = Φnt (11)

where

ṅt =

 ṅ1,t
...

ṅM,t

 Φ =


λ1g11 λ1g21 · · · λ1gM1

λ2g12 λ2g22 · · · λ2gM2
...

... . . . ...
λMg1M λMg2M · · · λMgMM

 (12)

Matrix Φ captures a modified technology network which is adjusted by sectoral innova-
tion rates. A firm’s patent accumulation in the past affects its future patent accumulation
through knowledge spillovers, the strength of which is captured by matrix Φ. A higher
innovation rate in the ith sector leads to faster accumulation of patents in sector i and
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also contributes to patent accumulation in sector j since ni,tgij enters the expression for
nj,t+∆t − nj,t given that gij 6= 0. Even if gij = 0, as long as the network is irreducible,
then there exists a path (i, l1, l2, · · · , ln, j) so that ni,t impacts nj,t+∆t − nj,t indirectly.
The existence of an irreducible network guarantees that each sector communicates with
each other.

It is interesting to compare the technology network here and the social development
network in Jackson and Rogers (2007). In their paper, the main way for a person to
make new friends is by meeting friends of friends. In particular, if a person has a well-
connected friend, it will be much easier for the person to make new friends through
the local search of her well-connected friend’s social network. In our case, new firms
enter a certain sector of the economy and accumulate knowledge in that sector. They
are more likely to subsequently enter new sectors where they can apply their existing
knowledge more efficiently. This is analogous to the local search in the social networks.

Due to the fact that the arrival of new patents is random, the evolution of a firm’s
patent portfolio is history dependent which makes it a daunting job to track the dynam-
ics of patent accumulation across sectors. In order to proceed with the analytical anal-
ysis, the rest of the paper adopts the mean-field approximation, popularized by Jackson
and Rogers (2007). The mean-field approximation assumes that all innovations happen
deterministically at the expected rate. Under the mean-field approximation, aggregating
individual firms’ patent accumulation and taking into account entrants’ innovation, we
obtain the sectoral patent accumulation as follows:

Ni,t+∆t −Ni,t = piLtη∆t+ λi∆t
∑
j∈T

Nj,tgji ∀i ∈ T , (13)

where Ni,t is the total number of patents in sector i, Lt is the population of firms at
time t and pi is the probability that a new entrant will enter sector i. The increase of the
number of patents in sector i for a short time interval ∆t is the result of both entrants’
and incumbents’ innovation. We are free to aggregate individual firms’ knowledge
stocks, ni,t, to the sectoral level because of the constant return to scale of the innovation
function. The next proposition characterizes growth at both the aggregate and sectoral
level, where growth is defined as the increase in the stock of knowledge.

Proposition 2. In the long run, different sectors converge to the same growth rate,

which is equal to the aggregate growth rate of the economy:

Ṅt/Nt = Ṅi,t/Ni,t = τ if η < τ (14)

Ṅt/Nt = Ṅi,t/Ni,t = η if η > τ (15)
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where τ is the dominant eigenvalue of the matrix Φ.

Proof. See Appendix.

In an economy where each sector is connected with each other, it is no surprise that
all sectors eventually grow at the same rate. There are two sources of growth in the
economy: both entrants and incumbents contribute to the accumulation of knowledge.
On one hand, the dominant eigenvalue of Φ determines how fast knowledge in every
sector grows due to incumbents’ innovation. On the other hand, entrants in every period
bring new ideas to the economy at the rate of population growth. Ultimately, the mag-
nitude of economic growth depends on whether the former dominates the latter or not.
The rest of the paper will focus on the theoretical interesting case of τ > η, namely, the
incumbents’ contribution to innovation outweighs the entrants’ contribution.

Proposition 2 sheds light on our understanding of growth in an economy where in-
tersectoral knowledge spillovers prevail. It highlights the role of the innovation-adjusted
technology network in determining economic growth. For an economy without inter-
sectoral knowledge spillovers, economic growth is simply determined by the fastest
growing sector. Here every sector contributes to the knowledge accumulation in the
economy in two ways. First, each sector applies both intrasectoral and intersectoral
knowledge to conduct innovation. Their innovation capacities determine how much
knowledge they can produce. Second, knowledge produced by each sector can be used
for innovation by other sectors. The position of a sector in the technology network de-
termines how far this sector’s knowledge spreads in the economy. It is the interplay of
these two forces that determines the growth rate of the economy.

Given the equal growth rate of all sectors in our economy, it naturally gives rise to a
stationary patent distribution over sectors. To characterize this feature, we first define a
vector Qt = (Q1,t, Q2,t, · · · , QM,t), where Qi,t =

Ni,t
Nt

is sector i’s share of total patent
stock at time t. Let ∆t = 1, and rewrite equation (13) as follows:

Ni,t+1 = piLtη +Ni,t + λi
∑
j∈T

Nj,tgji ∀i ∈ T (16)

Define

Ψ =


1 + λ1g11 λ1g21 · · · λ1gM1

λ2g12 1 + λ2g22 · · · λ2gM2
...

... . . . ...
λMg1M · · · · · · 1 + λMgMM


Now equation (16) can be written in matrix form:
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Ñt+1 = Ltηp̃+ ΨÑt (17)

where p̃ = (p1, p2, · · · , pM) and Ñt = (N1,t, N2,t, · · · , NM,t)
′ . Matrix Ψ determines the

evolution of each sector’s share. The next proposition summarizes the main findings.

Proposition 3. The sector sharesQt approach to a limitQ in the long run, which satisfy

the following system of equations:

ψQ = ΨQ

where ψ = τ + 1.

Proof. See Appendix.

The above proposition provides new insights on the share of each sector. Note
that Q is the eigenvector associated with the dominant eigenvalue ψ of the matrix Ψ.
The share of each sector is equal to the corresponding entry of the eigenvector. In the
network literature, Q is called the generalized eigenvector centrality. This is a measure
of the importance of nodes in the network. It assigns scores to each node. A higher score
implies a more central position of a node. A node gets higher scores if it is connected
with other high score nodes. In the context of this paper, a sector’s share in the long run
is determined by its position in the network, represented by the matrix Ψ. A sector that
receives strong knowledge spillovers from other sectors is located in a central position
of the network.

Note that a sector’s share here is very different from that in a model without inter-
sectoral knowledge spillovers. For the latter, the largest sector is always the one with
the highest innovation rate. In contrast, with intersectoral knowledge spillovers, that
may not be the case. A sector that innovates at a slow rate may turn out to have a large
size if it enjoys strong knowledge spillovers from other sectors. The following exam-
ple illustrates this point. Suppose there are 4 sectors in the economy, and the network
structure of the economy is represented by a weighted adjacency matrix as follows:

G
′
=


1 0.3 0.3 0.3

0.1 1 0.1 0.1
0.1 0.1 1 0.1
0.1 0.1 0.1 1

 (18)

The network structure in the above matrix is such that sector 1 receives the strongest
knowledge spillovers from other sectors in the economy. Now let’s assume that the
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innovation rates for each sector are:

λ1 = 0.01, λ2 = 0.011, λ3 = 0.012, λ4 = 0.013,

where sector 1 has the lowest innovation rate. Given this information, the long-run
sector shares can be easily calculated according to Proposition 3:

Q1 = 0.3236, Q2 = 0.1727, Q3 = 0.2193, Q4 = 0.2844.

From the above results, sector 1 is the largest sector in the economy. This simple
numerical example showcases a possibility that a sector can become the dominant sector
even if it does not innovate as fast as the other sectors do. Sectors that are capable of
using resources from other sectors efficiently can grow large.

We have shown how heterogeneous intersectoral knowledge spillovers together with
sectoral innovation rates affect growth and sector shares. Next, we will demonstrate that
the same forces also play a role in affecting the size distribution of firms.

The size of a firm is measured by the number of patents it holds. Aggregating
equation (9) across all sectors gives the dynamics of firm size:

nt+∆t − nt =
∑
i∈T

λi∆t
∑
j∈T

nj,tgji (19)

In the economy, the number of firms grows at the rate η. At time t, the number of
firms in the age cohort a is proportional to eη(t−a). As a result, the age distribution of
firms is an exponential distribution. At the same time, as firms grow large, their growth
rate converge. Therefore the size of a firm is a deterministic function of age, which
gives rise to a Pareto distribution. The proposition below summarizes the details.

Proposition 4. The right tail of the accumulative firm size distribution F (n) is given

by:

F (n) = 1− αn−
η
τ

where α is a constant.

Proof. See Appendix.

The firm size distribution displays a heavy tail. The thickness of the right tail de-
pends on the shape parameter, η/τ . A higher growth rate of the firm population, η,
holding the firm growth rate τ constant, leads to smaller firm size differences across
time and thus a thinner right tail. On the other hand, a higher firm growth rate, τ , given
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the population growth rate η fixed, results in a higher proportion of large firms and
therefore a thicker right tail.

The firm size distribution found in this paper is consistent with the literature (Gabaix
(2009)), but with a different economic mechanism. In this paper, firms grow over time
at the same rate. The growing population of firms gives rise to different age cohorts,
which, combined with firm growth, generate different size cohorts of firms. The relative
size of the firm growth rate and the population growth rate determines the shape of the
firm size distribution. A special case where τ = η will deliver Zipf’s distribution. The
fundamental linkage between economic growth and the firm size distribution makes the
latter subject to the impacts of the same forces that influence the former.

4.3. Reducible Network

We have so far established an innovation model under an irreducible network and ex-
plored several implications of this network structure. In this section, the assumption
that the technology network is irreducible will be relaxed. The key difference between
an irreducible network and a reducible network is that, for the latter, technologies in one
area need not communicate with technologies in all other areas. In terms of the network
structure, this means that the network is more sparse than it was before. Knowledge
spillovers in such a network display local effects instead of global effects. The defini-
tion below formally defines a reducible network.

Definition 2. A network is reducible if it can be partitioned exclusively into different
subnetworks that are irreducible.

A reducible network represents an economy formed of multiple technology clusters.
Each technology cluster is comprised of several sectors that are technically related to
each other. Denote the ith technology cluster by G̃i as follows:

G̃i =

 g̃i11 · · · g̃i1Mi
... . . . ...

g̃iMi1 · · · g̃iMiMi


Every technology cluster is an irreducible subnetwork. Let the number of clusters

be N , then NMi = M , where M is the total number of sectors in the economy. The
whole reducible network can be expressed as a matrix:
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G̃ =


G̃1 0 · · · 0

0 G̃2 · · · ...
...

... . . . ...
0 · · · · · · G̃N


where 0 is a zero matrix. Also define the sectoral innovation-adjusted cluster network
as:

Φ̃i =

 λi1g̃
i
11 · · · λi1g̃

i
1Mi

... . . . ...
λiMig̃

i
Mi1 · · · λiMig̃

i
MiMi


Within each technology cluster, most of the intuition developed previously in the

case of an irreducible networks is retained. In particular, economic growth is deter-
mined by the subnetwork structure of each technology cluster as well as sectoral inno-
vation rates. At the aggregate level, however, different clusters may experience differ-
ent growth rates and economic growth is driven by the cluster that grows fastest. These
findings are summarized by the following proposition.

Proposition 5. If an economy is represented by a reducible technology network, G̃, then

the long-run growth rates of each technology cluster and the economy are given by:

Ṅ i
t/N

i
t = τi

Ṅt/Nt = τmax = max
i
{τi}

where τi is the dominant eigenvalue of Φ̃i.

The reducible network structure allows sectors to grow at different rates across clus-
ters but retain convergence within clusters. Note that it is possible for different clusters
to grow at the same rate. Nonetheless, the observation that two clusters show the same
growth rate does not necessarily imply that their underlying network structures are the
same. It could be the case that one cluster has limited knowledge spillovers but higher
sectoral innovation rates while the other cluster has strong knowledge spillovers but
lower sectoral innovation rates. As an illustration, suppose that there are two technol-
ogy clusters in the economy. These two technology clusters are represented by two 4×4

matrices as follows:
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G1 =


1 0.01 0.01 0.01

0.01 1 0.01 0.01
0.01 0.01 1 0.01
0.01 0.01 0.01 1

 G2 =


1 0.5 0.5 0.5

0.5 1 0.5 0.5
0.5 0.5 1 0.5
0.5 0.5 0.5 1


As a result, the network structure of the economy can be expressed as:

G =



1 0.01 0.01 0.01 0 0 0 0
0.01 1 0.01 0.01 0 0 0 0
0.01 0.01 1 0.01 0 0 0 0
0.01 0.01 0.01 1 0 0 0 0

0 0 0 0 1 0.5 0.5 0.5
0 0 0 0 0.5 1 0.5 0.5
0 0 0 0 0.5 0.5 1 0.5
0 0 0 0 0.5 0.5 0.5 1


Let λ1 = 0.1 be the innovation rate for all sectors in cluster 1, and λ2 = 0.0412 be
the innovation rate for all sectors in cluster 2. It is easy to show that the dominant
eigenvalues for both clusters are the same (0.1030), which means that the long-run
growth rates for both clusters are the same.

In this example, sectors in cluster 1 are technologically isolated while those in clus-
ter 2 are well connected. However, sectors in both clusters grow at the same rate. They
grow due to different reasons. Sectors in cluster 1 grow mainly because they have a
high innovation rate, while sectors in cluster 2 grow because they benefit from inter-
sectoral knowledge spillovers. This also has implications for individual firms’ growth
dynamics. Firms initially rooted in some sector of cluster 1 are more likely to special-
ize in one area because the benefits of intersectoral knowledge spillovers are limited
and firms have less incentive to internalize these benefits by expanding their portfolios.
This is not the case for firms entering the second cluster. In this case, there is a higher
probability that a firm will develop a more diversified portfolio.

The fact that clusters grow at different rates has natural implications for the dynam-
ics of sector shares. The discrepancy of cluster growth rates leads to the shrinking of
the shares of all clusters except the fastest growing cluster.15 Therefore, there is no
stationary sector shares. The shares of all sectors, other than those belong to the fastest
growing cluster, vanish in the long run. However, the relative sector sizes within each
cluster still approach constant in the long run.

To show the above results formally, we must first introduce some new notations.
Define the vector of sector shares in cluster i at time t as Qi

t = (Qi
1,t, Q

i
2,t, · · · , Qi

Mi,t).
The aggregate share of a cluster at time t is thus Q̂i

t =
∑

h(Q
i
h,t), and the relative share

15To simplify the analysis here, it is assumed that the fastest growing cluster is unique.
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of sector h within cluster i at time t is Πt(h|i) =
Qih,t

Q̂it
. Denote the vector that contains

the conditional sector shares within cluster i as Πi
t = (Πt(1|i),Πt(2|i), · · · ,Πt(Mi|i)).

The next proposition shows that the conditional sector shares within cluster i converge
to Πi = limt→∞Πi

t in the long run.

Proposition 6. The conditional sector shares within cluster i, Πi, satisfy the following

system of equations:

ψiΠ
i = ΨiΠi ∀i ∈ (1, 2, · · · ,N ),

where ψi is the dominant eigenvalue of Ψi. Except the fastest growing cluster, the shares

of all other clusters shrink and eventually vanish:

lim
t→∞

Q̂i
t → 0, ∀i 6= imax.

Comparing Proposition 6 with Proposition 3, the predictions of sector shares differ
substantially under different assumptions of the network structure. When the economy
is represented by a reducible network, the model predicts divergent sector shares, some
of which become negligible. However, within each technology clusters, the conditional
sector shares tend to remain non-negligible and stay constant over time. This is because
sectors belong to the same technology cluster grow at the same rate in the long run.
Therefore, although the absolute shares of sectors in the slow-growing clusters shrink
over time compared to the absolute sector shares in the fast-growing clusters, the relative
shares of sectors remain stable within each cluster in the long run.

The features of the reducible network also play an important role in shaping the
distribution of firm sizes. To see this, note that in a reducible technology network, firms
innovate locally within a cluster. They stochastically enter a sector and accumulate
knowledge in that sector. They then apply their knowledge to other sectors where they
have a comparative advantage. However, they will not be able to expand their portfolios
in an unlimited fashion, because knowledge in one technology cluster may not be useful
in others. In addition, the network structure of a cluster imposes some restrictions on
how valuable each piece of knowledge is on average, thus providing a limit upon how
fast a firm can innovate.

Given the impact of network structures on firm growth, the firm size distribution
should be considered conditional on clusters. In particular, there are different firm size
distributions over different clusters. Denote the accumulative firm size distribution in
cluster i as Fi(n). The following proposition characterizes the tail behavior of these
distributions.

Proposition 7. The right tail of the accumulative firm size distribution Fi(n) for cluster
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i is given by:

Fi(n) = 1− αin−η/τi ∀i ∈ (1, 2, · · · ,N )

where τi is the dominant eigenvalue of Φ̃i and αi is a cluster specific constant.

As shown in Proposition 7, the cluster-specific growth rate determines the thickness
of the right tail of the firm size distribution for each technology cluster. Proposition 7
provides a new angle to think about firm size differences compared to the traditional
literature.16 In the traditional literature, the main mechanism to generate a Pareto-type
distribution is the assumption that firms follow a random growth process. In this case,
firms in the same age cohort have different sizes due to different realizations of inno-
vation shocks. Firms with good luck may expand and grow, while firms with bad luck
shrink over time. In contrast, in our model, firms in the same age cohort can have dif-
ferent sizes if the underlying technologies that sustain their growth are different. Put
differently, the fact that firms specialize in different technology clusters creates a fun-
damental difference in their growth potential, which, in turn, has an impact on their
sizes.

To sum up, this section demonstrates that different network structures have impor-
tant implications on the long term behaviors of the economy. In next section, a simple
numerical analysis is conducted to highlight these differences. The purpose of such
an exercise is to offer a visual comparison of the irreducible and reducible network
structures.

4.4. Irreducible v.s. Reducible Network: A Numerical Analysis

Two network structures are constructed, an irreducible network and a reducible net-
work. The irreducible network is represented by a 8 × 8 matrix, whose off-diagonal
entries are generated randomly from a uniform distribution with support (0,0.2), while
the diagonal entries are normalized to 1.

G =



1 0.0844 0.1357 0.0554 0.0877 0.1419 0.1919 0.1782
0.1930 1 0.1515 0.0092 0.0763 0.1509 0.0681 0.1919
0.0315 0.1584 1 0.0194 0.1531 0.0552 0.1171 0.1094
0.1941 0.1919 0.0784 1 0.1590 0.1359 0.0448 0.0277
0.1914 0.1311 0.1311 0.1390 1 0.1310 0.1503 0.0299
0.0971 0.0071 0.0342 0.0634 0.0980 1 0.0510 0.0515
0.1601 0.1698 0.1412 0.1900 0.0891 0.0238 1 0.1681
0.0284 0.1868 0.0064 0.0069 0.1293 0.0997 0.1398 1


16See, among others, Luttmer (2007, 2011).
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The sector-specific innovation rates are drawn from a uniform distribution with sup-
port (0,0.2), and the realization is:

λ = (0.1629, 0.1812, 0.0254, 0.1827, 0.1265, 0.0195, 0.0557, 0.1094)

An initial population of 4000 firms, 500 for each sector, are simulated, following the
process specified by equation (9), for a total of 300 periods to generate the dynamics
of firm development. In addition, a 4% growth rate of the population is assumed, and
every entrant enters a sector following a constant probability distribution function p̃.
p̃ is constructed to be equal to the equilibrium sector size distribution, which, in our
example, is:

p̃ = (0.2695, 0.3127, 0.0140, 0.1436, 0.1059, 0.0119, 0.0350, 0.1075)

The results below are not dependent on this assumption, which is simply employed
to speed up the convergence. The simulation is applied to every generation of firms.
The construction of an economy represented by a reducible network is similar. Assume
that the economy now contains two 4 × 4 subnetworks in the diagonal blocks, each of
which represents a technology cluster. The off-diagonal blocks are replaced with zero
matrices. The intersectoral knowledge spillovers within each cluster of the reducible
network are assumed to be the same as those in the irreducible network.

G
′
=



1 0.0844 0.1357 0.0554 0 0 0 0
0.1930 1 0.1515 0.0092 0 0 0 0
0.0315 0.1584 1 0.0194 0 0 0 0
0.1941 0.1919 0.0784 1 0 0 0 0

0 0 0 0 1 0.1310 0.1503 0.0299
0 0 0 0 0.0980 1 0.0510 0.0515
0 0 0 0 0.0891 0.0238 1 0.1681
0 0 0 0 0.1293 0.0997 0.1398 1


To facilitate a fair comparison, all other parameters are equal to those used before.

The simulation is done with the new network structure to generate a panel of firms for
the reducible network.

Our first exercise here is to compare the long-run growth rate under these two dif-
ferent network structures. Using the simulated panel of firms, we are able to calculate
the time series of sectoral growth rates. The results are shown in the figure below.
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(a) IRREDUCIBLE NETWORK: GROWTH RATE V.S. TIME

(b) REDUCIBLE NETWORK: GROWTH RATE V.S. TIME

FIGURE 4
IRREDUCIBLE V.S. REDUCIBLE TECHNOLOGY NETWORK: SECTORAL GROWTH

The top panel of the Figure 4 depicts the dynamics of sectoral growth in the ir-
reducible network. All sectors grow at the same rate in the long run, as predicted by
Proposition 2. In contrast, sectors in the reducible network are divided into two clusters,
as shown in the bottom panel of Figure 4. Sectors converge to the same growth rate in
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the long run within each cluster but diverge across clusters. As explained in Proposition
5, the divergence of sectoral growth rate in different clusters is driven by the facts that
different technology clusters do not communicate with each other and that the network
structures of different clusters are not the same.

(a) IRREDUCIBLE NETWORK: GROWTH RATE V.S. TIME

(b) REDUCIBLE NETWORK: GROWTH RATE V.S. TIME

FIGURE 5
IRREDUCIBLE V.S. REDUCIBLE TECHNOLOGY NETWORK: SECTOR SHARE DISTRIBUTION
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Next, we analyze the change of sector shares over time in Figure 5. The comparison
of the two panels in the figure reveals the significant difference of the sector share evo-
lution. In the irreducible network, each sector’s share share approaches a fixed number
and stays constant in the long run.

Nonetheless, in the reducible network, the shares of some sectors asymptotically
approach zero, while others remain positive. The discrepancy of the dynamics of the
sector shares for the two network structures is a direct result of heterogeneous sectoral
growth. Sectors in the slow-growing cluster shrink over time relative to those in the
fast-growing cluster.

Highlighted by Proposition 6, the relative sector shares within each technology clus-
ter are constant in the reducible network in the long run. This feature is shown in FIG-
URE 6. Panel (a) and (b) in the figure corresponds to the top left and the bottom right
blocks of the matrix G′ respectively. In both panels of this figure, sectors start with the
same share, and then change rapidly in their relative sizes, before converging to a stable
state.
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(a) CLUSTER 1

(b) CLUSTER 2

FIGURE 6
WITHIN CLUSTER SECTOR SHARE DISTRIBUTIONS

Lastly, we compare the firm size distributions in the irreducible and reducible net-
works in FIGURE 7. Note that the horizontal axis and the vertical axis are both in log
scale. The firm size distributions in both cases are clearly log-linear, one notable feature
of the Pareto distribution. For the reducible network, the firm size distribution in the
two technology clusters differs in terms of the thickness of the right tails. As shown in
Proposition 7, the thickness of the right tail is determined by the ratio of the population
growth rate and the long-run growth rate of each technology cluster. For a given pop-
ulation growth rate, the technology cluster that grows faster displays a flatter firm size
distribution, as is clearly the case in panel (b) of FIGURE 7.
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(a) IRREDUCIBLE

(b) REDUCIBLE

FIGURE 7
IRREDUCIBLE V.S. REDUCIBLE TECHNOLOGY NETWORK: FIRM SIZE

DISTRIBUTION

5. POLICY ANALYSIS

The theoretical framework established above reveals that different sectors contribute to
economic growth differently. The higher a sector’s innovation rate is, the more central
the sector’s position is in the technology network, the stronger its knowledge spillovers
are and thus the more it contributes to economic growth. The aim of this section is to
identify the importance of different sectors in terms of their ability to generate knowl-
edge spillovers and stimulate economic growth. Towards this aim, we introduce a policy
shock to a sector, holding everything else constant, so that the innovation rate of the sec-
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tor increases by 1%. We then examine the impact of this policy on economic growth.
Specifically, we consider two types of shocks: temporary and permanent policy shocks.
The former lasts only for one period while the latter is permanent once implemented.

In order to proceed with the policy exercise, estimates for the parameters that deter-
mine the evolution of knowledge accumulation are needed. As a start point, we use the
patent citation network as a proxy for the underlying technology network. The back-
ward citation ratio is calculated to represent the strength of knowledge spillovers from
the cited sector to the citing sector. We then proceed to calculate the sector-specific
entry rate ηpi. We first calculate the average annual growth rate of firm population
from the NBER Patent Citation Data. The average growth rate is for the 11-year period
between 1990 and 2000 where the data is most complete. The average probability of
sector entry is derived for the same period. We exclude sector 33, Genetics, from the
sample because this is a new sector that entered the dataset in 1977 and experienced
volatile growth.17

The last set of parameters required are the sectoral innovation rates. They are con-
structed following equation (13). We calculate the increase in the number of patents
per year due to the innovation of incumbents, and subtract that from the total annual
increase of patent to get the number of patents from incumbents. Using the technology
network, we infer the effective knowledge stocks for each sector which, combined with
the previous results, gives rise to the sectoral innovation rate. The detailed parameter
values are shown in TABLE A.3 in the Appendix.

With these parameters, we then simulate the dynamics of the economy, starting with
500 firms for each sector, for 800 periods. The temporary policy shock is introduced
at period 400. The results are shown in FIGURE 8. The figure depicts the percentage
increase in output for each sector shock relative to the status quo case. The horizontal
axis represents the sector index. The figure shows significant heterogeneity across sec-
tors. Policy shocks to most sectors have negligible impacts on aggregate output, with
only a few exceptions.

17Including Genetics in the sample does not alter the results qualitatively.
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FIGURE 8
THE IMPACTS OF TEMPORARY POLICY SHOCKS AFFECTING EACH SECTOR

We list the top 4 and bottom 4 sectors in TABLE 3. The ranking is consistent with
our expectation on which sector is important and which sector is not. For example,
Information Storage is the most effective sector to target. A one-period 1% increase of
the innovation rate in this sector leads to an increase in output of 0.027%. By contrast,
sectors such as Gas and Agriculture are in the bottom of the ranking. It is no surprise
that innovations in the Agriculture sector have little impact on other sectors since there
are limited knowledge spillovers originating from this sector.

TABLE 3
SECTOR RESPONSES TO TEMPORARY POLICY SHOCKS: TOP 4 V.S. BOTTOM 4

Top 4 Sectors Bottom 4 Sectors
Sector Name Output Increase (%) Sector Name Output Increase (%)

Information Storage 0.027 Apparel & Textile 0.0000089
Communication 0.016 Earth Working & Wells 0.0000073

Computer Hardware & Software 0.015 Gas 0.0000039
Semiconductor Devices 0.0093 Agriculture, Food & Textiles 0.0000023

We now turn to the case of permanent policy shocks. FIGURE 9 shows the effects
of permanent policy shocks on economic growth in the long run. The vertical axis rep-
resents the growth rate change due to policy shocks. The values shown in the figure
are calculated when the economy converges to a constant growth rate. Again, policy
shocks to different sectors demonstrate considerable differences in their effects on eco-
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nomic growth. Depending on which sector is targeted, the impacts of a 1% increase of
sectoral innovation rate on additional economic growth range from almost zero up to
about 0.32%.

FIGURE 9
THE IMPACTS OF PERMANENT POLICY SHOCKS AFFECTING EACH SECTOR

TABLE 4 provides a counterpart of TABLE 3 for the permanent policy shocks. It is
worthy to note that the ranking of the top 4 and the bottom 4 sectors here are the same
as the ranking in TABLE 3. This result suggests that the importance of different sectors
remains unchanged regardless of what type of policy is concerned.

TABLE 4
SECTOR RESPONSES TO PERMANENT POLICY SHOCKS: TOP 4 V.S. BOTTOM 4

Top 4 Sectors Bottom 4 Sectors
Sector Name Growth Rate Change (%) Sector Name Growth Rate Change (%)

Information Storage 0.32 Apparel & Textile 0.00010
Communication 0.19 Earth Working & Wells 0.000085

Computer Hardware & Software 0.17 Gas 0.000045
Semiconductor Devices 0.11 Agriculture, Food & Textiles 0.000027

For the top 4 sectors in the table, permanent policy shocks have non-trivial effects
on stimulating economic growth. For instance, the policy shock to Information Storage
increases the economic growth rate by 0.32%, followed by 0.19% for Communication.
As a comparison, the policy shock to the least responsive sector, Agriculture, Food &
Textiles, contributes a 0.000027% increase of the economic growth rate. Thus, the most
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effective industry policy can generate an impact which is more than 10,000 times larger
than the least effective industry policy, implying a strict hierarchy among sectors.

6. CONCLUSION

The paper provides novel empirical evidence on the importance of intersectoral knowl-
edge spillovers for innovation using the patent citation data from U.S. Patent and Trade-
mark Office. In particular, the paper documents that cross-sector knowledge spillovers
are important for an individual firm’s innovation in both the intensive margin as well
as the extensive margin. In addition, the empirical evidence reveals that sectors differ
in their efficiencies in utilizing cross-sector knowledge, reflecting significant sectoral
heterogeneity.

Motivated by the empirical evidence documented in the paper, we construct a model
of endogenous innovation on multiple technology sectors, where firms takes into ac-
count heterogeneous intersectoral knowledge spillovers when conducting innovation.
The economy as a whole is modeled as a technology network that captures both in-
trasectoral and intersectoral knowledge spillovers. Firms enter the economy by pro-
ducing a new patent in a particular sector and then accumulate knowledge to expand
their patent portfolios to other sectors. The paper makes theoretical contributions to
the understanding of the relationship between the technology network and a range of
important economic issues, including economic growth, sector shares and the firm size
distribution. Moreover, the paper demonstrates that a more sparse network structure
limits the impacts of intersectoral knowledge spillovers, and shows how changes in the
network structure affect the aggregate behavior of the economy.

The framework proposed in the paper offers a potential toolkit to identify key sectors
in the economy. We evaluate a sector’s importance by imposing an industry-oriented
policy shock and simulate its impact on economic growth. The policy exercises show
that there are enormous differences across sectors in regard to their contributions to eco-
nomic growth. A marginal increase of the innovation rate for the most important sector
can generate knowledge spillovers that result in additional economic growth which is
10,000 times larger than in the case of the least important sector.
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Appendix

Proposition 1. The value function for the firm’s problem has a solution as follows:

V (π̃n) =
∑
i∈T

ni∑
s=1

πis
r

+
∑
j∈T

njRj (20)

where (R1 · · ·RM) are the solutions to a system of M nonlinear equations:

rRj =
∑
i

θ(
π̄i
r

+Ri

ε
)

1
ε−1 gji[(1−

1

ε
)(
π̄i
r

+Ri)] ∀j ∈ T (21)

And the optimal innovation choices are given by:

λi = θ(
π̄i
r

+Ri

ε
)

1
ε−1 ∀i ∈ T (22)

Proof. Guess the value function V (π̃n) =
∑

i∈T
∑ni

s=1 aπis +
∑

j∈T njRj . Substitute
the guessing value function form into the Bellman equation, then we have:

r(
∑
i∈T

ni∑
s=1

aπis +
∑
j∈T

njRj) = max
{∑
i∈T

n∑
s=1

πis −
∑
i∈T

c(λi)
∑
j

njgji (23)

+
∑
i∈T

λi
∑
j∈T

njgji(aπ̄i +Ri)
}

(24)

The above equation holds if and only if:

a =
1

r
(25)

r
∑
j∈T

njRj = max
{λi}i

{∑
i∈T

λi
∑
j∈T

njgji(aπ̄i +Ri)−
∑
i∈T

c(λi)
∑
j

njgji

}
(26)

First order condition with respect to λi gives:

c
′
(λi)

∑
j

njgji =
∑
j

njgji(aπ̄i +Ri), ∀i ∈ T

which can be simplified to be:

c
′
(λi) = aπ̄i +Ri

Combined with a = 1/r and the cost function, we have the optimal innovation rate for
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each sector as follows::
λi = θ(

π̄i/r +Ri

ε
)

1
ε−1

Substitute the optimal innovation rates into (15)

r
∑
j∈T

njRj =
∑
i∈T

λi
∑
j∈T

njgji(aπ̄i +Ri)−
∑
i∈T

c(λi)
∑
j

njgji (27)

which holds if:

rnjRj =
∑
i

λinjgji(aπ̄i +Ri)−
∑
i

c(λi)njgji

After some algebra, we have:

rRj =
∑
i

λigji(π̄i/r +Ri)−
∑
i

λi
εθ1−εgji (28)

=
∑
i

θ(
π̄i/r +Ri

ε
)

1
ε−1 gji(π̄i/r +Ri)−

∑
i

θε(
π̄i/r +Ri

ε
)

ε
ε−1 θ1−εgji (29)

= θ
∑
i

(
π̄i/r +Ri

ε
)

1
ε−1 gji

[
π̄i/r +Ri −

π̄i/r +Ri

ε

]
(30)

= θ
∑
i

(
π̄i/r +Ri

ε
)

1
ε−1 gji

[
(1− 1/ε)(

π̄i
r

+Ri)
]
∀j (31)

This is what is required by the proposition.

Proposition 2. In the long run, different sectors converge to the same growth rate,
which is equal to the aggregate growth rate of the economy:

Ṅt/Nt = Ṅi,t/Ni,t = τ if η < τ (32)

Ṅt/Nt = Ṅi,t/Ni,t = η if η > τ (33)

where τ is the dominant eigenvalue of the matrix Φ.

Proof. Take the limit of ∆t→ 0 of equation (10):

Ṅi,t = Ltηpi + λi
∑
j∈T

Nj,tgji (34)

= L0e
ηtηpi + λi

∑
j∈T

Nj,tgji ∀i (35)

39



Normalize L0 = 1 and the above equations in matrix form:
Ṅ1,t

Ṅ2,t
...

ṄM,t

 = ηeηt


p1

p2
...
pM

+


λ1g11 λ1g21 · · · λ1gM1

λ2g12 λ2g22 · · · λ2gM2
...

... . . . ...
λMg1M λMg2M · · · λ1gMM




N1,t

N2,t
...

NM,t


Rewrite the equations in a compact form:

˙̃
N t = ηeηtp̃+ ΦÑt

where

˙̃
N t =


Ṅ1,t

Ṅ2,t
...

ṄM,t

 , p̃ =


p1

p2
...
pM

 , Ñt =


N1,t

N2,t
...

NM,t


By the fundamental theorem of Picard and Lindelof, the above system admits a

solution as follows:

Ñt = eΦtÑ0 +

∫ t

0

e(t−s)Φηeηsp̃ds

Assume that Φ has distinct real eigenpairs (τ1, V1), · · · , (τM ,VM ), then eΦt can be
decomposed to be as follows:

eΦt = V eTtV −1

where

T =


τ1 0 · · · 0
0 τ2 · · · 0
... . . . ...
0 0 · · · τM

 , V = aug(V1, V2, · · · , VM)

With the new notation, we have:

Ñt = V eTtV −1Ñ0 +

∫ t

0

V e(t−s)TV −1ηeηsp̃ds
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Define Γ = V −1Ñ0, H = ηV −1p̃, we have for each sector:

Ni,t = Vi1e
τ1tΓ1 + · · ·+ ViMe

τM tΓM +

∫ t

0

eηs[Vi1e
τ1(t−s)H1 + · · ·+ ViMe

τM (t−s)HM ]ds

(36)

= Vi1e
τ1tΓ1 + · · ·+ ViMe

τM tΓM +
M∑
j=1

∫ t

0

Vije
τjt+(η−τi)sHjds (37)

= Vi1e
τ1tΓ1 + · · ·+ ViMe

τM tΓM +
M∑
j=1

1

η − τj
Vije

τjt[e(η−τj)t − 1]Hj (38)

= Vi1e
τ1tΓ1 + · · ·+ ViMe

τM tΓM +
M∑
j=1

1

η − τj
Vij(e

ηt − eτjt)Hj (39)

Define τ = maxi{τi}i. If η > τ :

lim
t→∞

Ni,t = lim
t→∞

eηt
∑
j

Vije
(τj−η)tΓj +

M∑
j=1

1

η − τj
Vije

ηt[1− e(τj−η)t]Hj (40)

= eηt
M∑
j=1

Vij
η − τj

Hj (41)

From which we have:
Ṅi,t

Ni,t

= η, ∀i

If η < τ :

lim
t→∞

= lim
t→∞

eτ t
M∑
j=1

Vije
(τj−τ )tΓj +

M∑
j=1

1

η − τj
Vije

τ t[e(η−τ )t − e(τj−τ )t]Hj (42)

= eτ tVii(Γi +
Vi

τ − η
Hi) (43)

and
Ṅi,t

Ni,t

= τi , ∀i

Since all sectors grow at the same rate, so does the aggregate growth rate of the
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economy:

Ṅt

Nt

= η, if η > τ (44)

Ṅt

Nt

= τ , if η < τ (45)

Proposition 3. The sector shares Qt approach to a limit Q in the long run, which
satisfy the following system of equations:

ψQ = ΨQ

where ψ = τ + 1.

Proof.

Ñt+1 = Ltηp̃+ ΨÑt

Divide both sides of the equation by Nt:

1

Nt

Ñt+1 =
Ltη

Nt

p̃+ ΨQt

Which can be rewritten as:

1

Nt+1

Nt+1

Nt

Ñt+1 =
Ltη

Nt

p̃+ ΨQt

Note that:

Nt+1

Nt

= 1 +
Ltη +

∑
i λi
∑

j Nj,tgji

Nt

(46)

= 1 +
Ltη

Nt

+

∑
i λi
∑

j Nj,tgji

Nt

(47)

As shown in Proposition 2, as t → ∞, the innovation from the existing knowledge
stocks dominates the innovation from the entrants so we have:

lim
t→∞

∑
i λi
∑

j Nj,tgji

Nt

= τ

Plug the above result to the previous equation:

Nt+1

Nt

= 1 +
Ltη

Nt

+ τ
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With the result and note the fact that 1
Nt+1

Ñt+1 = Qt+1, we have:

(1 +
Ltη

Nt

+ τ )Qt+1 =
Ltη

Nt

p̃+ ΨQt

Rearrange the above equation to get:

(1 + τ )Qt+1 =
Ltη

Nt

(p̃−Qt+1) + ΨQt

Take the limit of t→∞ for the above equation:

lim
t→∞

(1 + τ )Qt+1 = lim
t→∞

Ltη

Nt

(p̃−Qt+1) + lim
t→∞

ΨQt

Note that limt→∞
Ltη
Nt

= 0 when τ > η, so we have:

ψQ = ΨQ

Where ψ = 1 + τ ∗.

Proposition 4. The right tail of the accumulative firm size distribution F (n) is given
by:

F (n) = 1− αn−
η
τ

where α is a constant.

Proof. Conditional on a firm entering sector i at the beginning, start from equation (13)
and take the limit of ∆t→ 0,

ṅt =
∑
i

λi
∑
j

nj,tgji

where ni,0 = 1 and nj,0 = 0 ∀j 6= i. We already know from Proposition 2 that the
aggregate number of patents Nt grows a rate τ in the long run. This will be true for
individual firms as well because of the constant return to scale of production function.

lim
t→∞

ṅt = τnt

The above equation implies that firm size for the same cohort of firms that enter the
same sector at the beginning is a deterministic function of age:

nt = αie
τt
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where αi is a constant specific to initial sector that firms enter. Revert the above equation
to express a firm’s age in terms of size:

t =
1

τ
log

nt
αi

Recall the population of firms grows at the rate η, so the distribution of firm age is an
exponential distribution. The proportion of firms older than a is thus:

Prob(firms older than a) = e−ηa

Substitute firm age a in terms of firm size n, we have:

Prob(firms larger than n) = e
− η
τ

log n
αi = (

n

αi
)−

η
τ

The accumulative firm size distribution, conditional on firms entering sector i at the
beginning, is thus:

Fi(n) = 1− (
n

αi
)−

η
τ

The unconditional firm size distribution is therefore:

F (n) =
∑
i

piFi(n)

=
∑
i

pi(1− (
n

αi
)−

η
τ )

= 1−
∑
i

pi(
1

αi
)−

η
τ n−

η
τ

= 1− αn−
η
τ

where α =
∑

i pi(
1
αi

)−
η
τ

Proposition 5. If an economy is represented by a reducible technology network, G̃,
then the long-run growth rates of each technology cluster and the economy are given
by:

Ṅ i
t/N

i
t = τi

Ṅt/Nt = τmax = max
i
{τi}

where τi is the dominant eigenvalue of Φ̃i.

Proof. Within each cluster, the proof is the same as the proof of Proposition 2. Since
each cluster is a irreducible network, all sectors within a cluster grow at the same rate,
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which is determined by the eigenvalue τi of the network of every cluster Φi.
Since different clusters grow at different rate, as time passes on, the fastest growing

cluster will dominate and the aggregate growth of the economy is thus determined by
the growth of the dominant cluster.

Proposition 6. The conditional sector shares within cluster i, Πi, satisfy the follow-
ing system of equations:

ψ∗i Π
i = ΨiΠi ∀i ∈ (1, 2, · · · ,N ),

where ψ∗i is the dominant eigenvalue of Ψi. Except the fastest growing cluster, the
shares of all other clusters shrink and eventually vanish:

lim
t→∞

Q̂i
t → 0, ∀i 6= imax.

Proof. From results in Proposition 5, we know that:

N i
t = cie

τit ∀i ∈ (1, · · · ,N )

Nt = ceτ
maxt

where ci and c are constants specific to cluster i and the whole economy respectively.
Since τi < τmax, we have:

lim
t→∞

N i
t

Nt

= lim
t→∞

ci
c
e(τi−τmax)t = 0

so

lim
t→∞

Q̂i
t = lim

t→∞

∑
hN

i
h,t

Nt

= lim
t→∞

N i
t

Nt

= 0 ∀i 6= imax

It is easy to see from the above results that sectors other than those in the fastest growing
cluster shrink in terms of the relative size. However, we can still explore the relative
size distribution of sectors within each cluster. Due to the fact that each cluster consists
of an irreducible network, we can examine the within cluster sector size distribution
separately for each cluster. Specifically, for cluster i:

Ñ i
t+1 = Ltηp̃

i + ΨiÑ i
t

Following the similar procedure in the proof of Proposition 3, we have:

(1 +
Ltη

∑Mi

h=1 p
i
h

N i
t

+ τi)Π
i
t+1 =

Ltη

Nt

p̃i + ΨiΠi
t
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Note that:
lim
t→∞

Ltη

Nt

= 0

Therefore, when t→∞, the above system of equations simplify to:

ψ∗i Π
i = ΨiΠi

where ψ∗ = 1 + τ .

Proposition 7. The right tail of the accumulative firm size distribution Fi(n) for
cluster i is given by:

Fi(n) = 1− αin−η/τi ∀i ∈ (1, 2, · · · ,N )

where τi is the dominant eigenvalue of Φ̃i and αi is a cluster specific constant.

Proof. The proof here follows that in Proposition 4. The population growth rate of firms
is the same across clusters, so we have the same firm age distribution over different
clusters. The only difference is that we have cluster specific growth rate, so firms in
the same age cohort can have different sizes depending on which cluster they belong to.
This feature determines the distribution of firm sizes in different clusters. In particular,
η
τ∗i

is the shape parameter for the firm size distribution of each cluster, which give rises
to our results in the proposition.
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TABLE A.1
SUMMARY OF TECHNOLOGY CATEGORIES

Category by HJB Relabel Name Number

11 1 Agriculture,Food,Textiles 7808
12 2 Coating 21257
13 3 Gas 6733
14 4 Organic Compounds 49041
15 5 Resins 53567
19 6 Miscellaneous-Chemical 141561
21 7 Communications 101276
22 8 Computer Hardware & Software 86433
23 9 Computer Peripherials 30084
24 10 Information Storage 44174
25 11 Electronic business methods and software 13882
31 12 Drugs 97507
32 13 Surgery & Med Inst. 53455
33 14 Genetics 4480
39 15 Miscellaneous-Drug& Med 9035
41 16 Electrical Devices 52782
42 17 Electrical Lighting 23333
43 18 Measuring & Testing 46449
44 19 Nuclear & X-rays 22562
45 20 Power Systems 51666
46 21 Semiconductor Devices 55702
49 22 Miscellaneous-Elec 32256
51 23 Mat. Proc & Handling 56574
52 24 Metal Working 35482
53 25 Motors & Engines + Parts 36162
54 26 Optics 16837
55 27 Transportation 30674
59 28 Miscellaneous-Mechanical 49743
61 29 Agriculture,Husbandry,Food 21358
62 30 Amusement Devices 8817
63 31 Apparel & Textile 11825
64 32 Earth Working & Wells 21464
65 33 Furniture,House Fixtures 18616
66 34 Heating 13527
67 35 Pipes & Joints 10707
68 36 Receptacles 20888
69 37 Miscellaneous-Others 98724

The first column corresponds to the original numeric technology category defined by Hall, Jaffe and
Trajjtenberg(HJT). The second column is the relabelled category number in the paper and the last column
shows the number of patents in each technology category.
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TABLE A.3
SECTORAL ENTRY PROBABILITY AND INNOVATION INTENSITY

Name Entry Probability Innovation Intensity

Agriculture,Food,Textiles 0.001078 0.056423
Coating 0.003607 0.069459
Gas 0.001191 0.044832
Organic Compounds 0.002537 0.076724
Resins 0.003671 0.069619
Miscellaneous-Chemical 0.020506 0.062229
Communications 0.012182 0.105481
Computer Hardware & Software 0.010279 0.095151
Computer Peripherials 0.002868 0.108225
Information Storage 0.003202 0.121202
Electronic business methods and software 0.004119 0.097338
Drugs 0.014888 0.088518
Surgery & Med Inst. 0.011166 0.076118
Miscellaneous-Drug& Med 0.00267 0.65657
Electrical Devices 0.004401 0.08409
Electrical Lighting 0.003373 0.083668
Measuring & Testing 0.006807 0.072112
Nuclear & X-rays 0.002453 0.078219
Power Systems 0.005826 0.074447
Semiconductor Devices 0.00184 0.10364
Miscellaneous-Elec 0.005005 0.086706
Mat. Proc & Handling 0.013088 0.058572
Metal Working 0.006256 0.067428
Motors & Engines + Parts 0.005509 0.063773
Optics 0.002104 0.081174
Transportation 0.006851 0.062832
Miscellaneous-Mechanical 0.011863 0.065531
Agriculture,Husbandry,Food 0.006891 0.054318
Amusement Devices 0.00407 0.072859
Apparel & Textile 0.00418 0.057728
Earth Working & Wells 0.004055 0.039236
Furniture,House Fixtures 0.006618 0.063958
Heating 0.003005 0.048228
Pipes & Joints 0.00248 0.061579
Receptacles 0.006259 0.06207
Miscellaneous-Others 0.026874 0.066039
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