
© 2020 by Dirk Krüger, Harald Uhlig, Taojun Xie and Asia Competitiveness Institute. All rights reserved. Short 
sections of text, not to exceed two paragraphs may be quoted without explicit permission provided that full 
credit, including © notice, is given to the source. 
 
 

 

 

ACI Policy Research Paper #01-2020 

 

 

Macroeconomic Dynamics and Reallocation in an Epidemic: 
Evaluating the “Swedish Solution” 

 

 Dirk KRÜGER 

 Harald UHLIG 

 Taojun XIE 

 

 

First version: April 2020 

Current version: September 2020 
 
 
 
 
 
 
 
Please cite this article as:  

Krüger, Dirk, Harald Uhlig and Taojun Xie “Macroeconomic Dynamics and Reallocation in 
an Epidemic: Evaluating the “Swedish Solution””, Policy Research Paper #01-2020, Asia 
Competitiveness Institute Policy Research Paper Series (April 2020). 

 



Macroeconomic Dynamics and Reallocation in an Epidemic:

Evaluating the “Swedish Solution”∗

Dirk Krueger† Harald Uhlig‡ Taojun Xie§

September 30, 2020

Abstract

In this paper, we argue that endogenous shifts in private consumption behavior across sectors of

the economy can act as a potent mitigation mechanism during an epidemic or when the economy is

re-opened after a temporary lockdown. We introduce a SIR epidemiological model into a neoclassical

production economy in which goods are distinguished by the degree to which they can be consumed at

home rather than in a social, possibly contagious context. We demonstrate that within the model the

“Swedish solution” of letting the epidemic play out without government intervention and allowing

agents to shift their consumption behavior towards relatively safe sectors can lead to substantial

mitigation of the economic and human costs of the COVID-19 crisis. We estimate the model on

Swedish health data and then show that compared to a model in which sectors are assumed to be

homogeneous in their infection risk, as in Eichenbaum, Rebelo, and Trabandt (2020), endogenous

sectoral reallocation avoids more than 2/3 of the decline in aggregate output and consumption, and

at the same time induces a dynamics of weekly death that accords very well with the matching and

of the number of deaths within one year. Our analysis implies case fatality rates below 0.2 percent

and a limit of less than 800 deaths per million for Sweden. We also characterize the allocation a

social planner would choose that can dictate sectoral consumption patterns and demonstrate that

the laissez-faire outcome with sectoral reallocation, while mitigating the economic and health crisis,

still implies suboptimally many deaths and too massive a decline in economic activity.
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1 Introduction

The COVID-19 pandemic of 2020 has the world in its grip. Policy makers had to wrestle with a serious

trade-off: how much economic activity should one allow, possibly risking hundreds of thousands addi-

tional deaths as a result? The policy response was swift, but varied, with many countries around the

world effectively shutting down their economies for extended periods of time in the spring and summer

of 2020, whereas other countries adopting policies that let the pandemic run its course without much

government intervention. Perhaps the most pointed example in the latter group is Sweden, which has

largely avoided government restrictions on economic activity, allowing people to make their own choices.

One can reasonably argue that Sweden was not as extremely laissez-faire as just described: the Swedish

government provided many guidelines and recommendations to its citizens, and the Swedish population

largely followed these, in order to mitigate the covid-19 spread. Nonetheless, the Swedish approach

differed significantly from the lockdowns and restrictions imposed by other countries. For the purpose of

this paper and our analysis and for comparison to Swedish data, we will therefore interpret the “Swedish

Solution”, as this laissez-faire extreme, in which the government does not intervene in the economic

adjustments of private behavior and the economy as a whole to the epidemic.

In this paper we evaluate to what extent consumers concerned about their health, even in the absence

of government intervention, will seek to mitigate economic interactions that carry the risk of infection,

given the potentially disastrous consequences for their health? We then deduce the macroeconomic and

public health consequences from the “Swedish Solution”.

Our starting point is a simple macroeconomic model, where agents consume and work, combined with

an SIR (“Susceptible-Infected-Recovered”) model standard in the epidemiology literature. Our starting

point is the model of Eichenbaum et al. (2020), ERT for short from now on, in which infections can occur

in the market place by consuming together or working together. Individuals participating in these market

activities are aware of the resulting infection- and death-risks, and thus may alter their consumption and

work patterns as the epidemic unfolds, but do not take into account the externality of their behavior

on the infection risks of others. Like them, we view the endogenous response in behaviour of people,

motivated by their own interest in preserving their health and avoiding the possibility of dying, as key in

understanding the spread of a pandemic and, ultimately, its economic costs, a significant advance from

the purely epidemiological models beautifully summarized in Atkeson (2020).

We depart from ERT in one crucial dimension, however. In contrast to them we assume the economy

is composed of several heterogeneous sectors that differ technologically in their infection probabilities.

There are two interpretations of this assumption. One is, that very similar goods can be consumed

in privacy at home ( Pizza delivery ) rather than in the market place (Pizza restaurant). Likewise,
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very similar work may be performed remotely rather than in an office, e.g. writing a report online at

home rather than in the community of co-workers. The key mechanism of our model is the endogenous,

privately optimal reallocation of individuals towards less contagious consumption activities and away

from sectors in which consumption (or production) is subject to larger Covid-19 infection risk.

To support the empirical relevance of this mechanism we turn to Leibovici et al. (2020) who provide

evidence for very substantial heterogeneity across sectors of the U.S. in the degree of social interaction

to facilitate the production of goods and services. Dingel and Neimann (2020) as well as Mongey and

Weinberg (2020) assess what share of jobs can be performed at home, and Toxvaerd (2020) provides

an equilibrium in which social distancing is an equilibrium outcome emerging from individually rational

behavior. Consistent with our main mechanism, Farboodi et al. (2020) provide evidence from US micro-

data for a large reduction in social activity by private household even prior to the implementation of

public stay-at-home-orders and lockdowns of economic activity.

For Sweden, Figure 1 displays seasonally adjusted monthly consumption expenditures on restaurants

as well as on groceries, together with total consumption. There is clear evidence of reallocation of

consumption activities away from food consumption in restaurants and towards food consumption at

home, as proxied by expenditures on groceries. Aggregate consumption fell by 10% between February

and April 2020, whereas consumption in restaurants collapsed by 50%. In contrast, expenditures on

groceries actually increased 5% between February and March, and held steady thereafter. It is this

reallocation between sectors, or modes of consumption that is at the heart of our quantitative dynamic

equilibrium model.

How potent this reallocation mechanism is quantitatively depends crucially on the degree to which

goods in different sectors are substitutable, as measured by the elasticity of substitution across goods

(or work activities), which we denote by η in our paper. If different sectors are interpreted simply as

different modes (food at home, food in restaurants) in which otherwise similar goods are consumed, then

this elasticity can be assumed to be high. An alternative interpretation is that these sectors represent

rather distinct goods or distinct lines or work, and that substitutability among them may be lower.

We initially follow this interpretation and choose η = 3, following Adhmad and Riker (2019). We also

consider a higher value, η = 10 as our benchmark, following Fernandez-Villaverde (2010). In both cases

we assume that the economy is composed of two equally sized sectors that simply differ in their infection

risk. Our parameterization implies that the infection probability in the most infectious sector (for the

same consumption or work intensity) is nine times as high as in the least infectious sector.

Note that we interpret the term “consumption” in this paper broadly and applicable to non-market

social activities as well. The substitution discussion above is relevant just as much for partying together

with friends as opposed to talking online, for congregating in parks as opposed to staying at home,
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Figure 1: Comparing two different consumption sectors in Sweden.

to demonstrating against some cause together in the streets rather than sending petitions per e-mail.

Viewed from that perspective, infection is inexorably linked to consumption or work place interaction,

and we shall assume as much in our analysis.

We estimate a subset of the model parameters on Swedish weekly data on deaths for 2020. To preview

our results, Figure 2 displays both the data from Sweden as well as from our estimated model and the

SIR model with no interaction between the health and consumption dynamics. It shows that our model

delivers a health dynamic that captures the empirical record in Sweden well, both the initially small

number of death, its explosion during the month of March, and then the slower decline in May and June.

Importantly, for the same initial conditions a pure epidemiological model predicts a quicker rise in deaths

in March, but a slower pace. The reason that our epidemiological-economic model predicts a slower rise

is that early in the pandemic, when words gets out that Covid-19 is a highly infectious disease that

spreads differently through various consumption activities, individually rational households will both

reduce consumption and labor input (as already pointed out by ERT), but crucially also substitute away

from the most infectious activities. As a result, the onset of the pandemic is delayed, but once it starts

and households have already adjusted towards less contagious consumption activities, it develops rapidly

in the later weeks of March and early April.

Somewhat remarkable, the model not only captures well the health dynamics in Sweden, but pre-
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Figure 2: Comparison of optimised models. Updated!

dicts fairly accurately the size of the economic crisis induced by the pandemic. In the data aggregate

consumption falls by ca. 10% in the second quarter of 2020. Our benchmark model predicts a decline

of about 8% in measured consumption. Importantly, in the absence of sectoral reallocation the model

would predict a collapse in measured consumption of about 23%, again demonstrating how potent the

sectoral reallocation mechanism is for mitigating the health-induced economic crisis.

Our results are stark, partially because our analysis assumes smoothly functioning labor markets

where workers can quickly reallocate to the sectors now in demand: waiters at restaurants deliver food

instead, for example. It is easy to argue that the world is not as frictionless as assumed here and that

the message of our paper is perhaps a bit too Panglossian. We do not wish to argue that the substantial

mitigation happens as easily on its own. The analysis here does show, however, that recognition of

substitution possibilities and recognition of private incentives of agents to become infected is potentially

an important aspect in thinking about the current pandemic, both its onset but also its evolution as the

economy is again opened to activity following the lock-down implemented in many countries.

Our analysis relates to other recent work that has emphasized the need to think about a multisector

economy for the purpose of analyzing the economic effect of the recent epidemic, such as Alvarez et al.

(2020), Glover et al. (2020), Guerrieri et al. (2020) or Kaplan et al. (2020). However, these authors

do not feature the feedback from the differential infection probabilities across sectors into the private
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reallocation decision making of agents. A second very active literature evaluates the impact of publicly

enforced mobility restrictions and social distancing measures on the dynamics of an epidemic, see e.g.

Correia et al. (2020), Fang et al. (2020) or Greenstone and Nigam (2020). Complementary to this work

we emphasize that private incentives to redirect consumption behavior might go a long way towards

mitigating or even averting the epidemic, even in the absence of mobility restrictions or publicly enforced

social distancing measures. Our paper complements the work by Barrero et al. (2020a) or, in shortened

form, as Barrero et al. (2020b), who document that the covid-19 crisis is also a reallocation shock, when

examining data for the U.S. economy. For the U.S., however, these sectoral reallocations may have mainly

been driven by governmental restrictions. By contrast, our reallocation results from private concerns

about infection risks only.

This paper is meant to clarify the key forces, rather than painting a completely accurate quantitative

picture of the Swedish time series. We therefore focus first, in the model developed in section 2, on the

infection risk in the consumption sector only. In section 3 we provide theoretical results that demonstrate

the importance of the elasticity of substitution across sectors, and also argue that the same mechanism

is at work if the risk of infections is located in the labor market rather than the consumption goods

market, though one may wish to argue that the relevant elasticity of substitution is lower in that case.

In section 4 set up the problem of a social planner who can observe which agents are infected and which

are not, akin to the planning problem studied by Alvarez et al. (2020) One may think of this as a strong

government with wide testing capabilities1 of individuals, or a sufficiently powerful appeal to in particular

the infected agents to do what is good for the country. Section 5 discusses the computation, calibration

and estimation of the model, and the results for the baseline economy are contained in section 6, showing

how individually rational reallocation of economic activity across sectors is a strong mitigating force of

the crisis even in the absence of explicit government intervention. Section 7 conducts sensitivity analysis

and section 8 contrasts the outcomes of the laissez-faire economy with that chosen by the social planner,

arguing that the social planner can stop the pandemic in its tracks early and quickly. This should not

be all that surprising: the social planner simply prevents infected agents from co-mingling with the

susceptible part of the population (by separating consumption of both groups across sectors), even if this

imposes considerable, additional pain on the infected agents, which the social planner of course takes

into account. What is more surprising, though, is that the decentralized solution with its substitution

possibilities goes a long way towards the private economy achieving a similar outcome, relative to an

economy where these substitution opportunities are absent.

1In this sense our social planner analysis is akin in spirit to the focus on testing in Berger et al. (2020).
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2 Model

2.1 The macroeconomic environment

Our framework builds on Eichenbaum-Rebelo-Trabandt (2020) or ERT for short, and shares some key

model components. Time is discrete, t = 0, 1, 2, . . ., measuring weeks. There is a continuum j ∈ [0, 1] of

individuals, maximizing the objective function

U = E0

∞∑
t=0

βtu(cjt , n
j
t )

where β denotes the discount factor, cjt denotes consumption of agent j and njt denotes hours worked,

and where expectations E0 are taken with respect to stochastic health transitions describe delow in

detail. Like ERT, we assume that preferences are given by

u(c, n) = ln c− θn
2

2

In contrast to ERT, we assume that consumption cjt takes the form of a bundle across a continuum of

sectors k ∈ [0, 1],

cjt =

(∫
(cjtk)1−1/ηdk

)η/(η−1)

(1)

where η ≥ 0 denotes the elasticity of substitution across goods and cjtk is the consumption of individual

j at date t of sector k goods. Workers can split their work across all sectors and earn a wage Wt in units

of a numeraire good2 for a unit of labor, regardless where they work. As the choice of the numeraire is

arbitrary, we let a unit of labor denote that numeraire: thus, wages are equal to unity, Wt = 1.

Goods of sector k are priced at Ptk in terms of the numeraire, i.e. in units of labor. We suppose

that production of goods in sector k is linear in labor, i.e. total output of goods in sector k equals the

total number of hours worked there times some aggregate productivity factor A, and that pricing in each

sector is competitive. Thus, prices equal marginal costs and are the same across all sectors,

Ptk = Pt = 1/A

2The presentation of the model is easier assuming a numeraire rather than payment in a bundle of consumption goods.
We will not examine sticky prices or sticky wages in this model.
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The date-t budget constraint of the household is therefore3

∫
cjtkdk = Anjt (2)

2.2 The epidemic

As in ERT, we assume that the population will be divided into four groups: the “susceptible” people

of mass St, who are not immune and may still contract the disease but are not currently infected, the

“infected” people of mass It, the “recovered” people of mass Rt and the dead of mass Dt. We assume

that the risk of becoming infected, and the rate of death or recovery do not depend on the sector of

work, but exclusively depend on consumption interactions. Our focus here is on the sectoral shift in

consumption: for simplicity and in contrast to ERT, we assume that infected individuals continue to

work at full productivity, but that the disease can only spread due to interacting consumers. We show

in subsection 3.3, that this is similar to a model, where the infection can only spread via the workplace.

In our robustness analysis, we also allow for the additional, purely mechanical possibility of autonomous

transmissions from infected to susceptible individuals, regardless of their choices.

Different goods or, perhaps better, different ways of consuming rather similar goods differ in the

contagiousness. To that end, we assume that there is an increasing function φ : [0, 1] → [0, 1], where

φ(k) measures the degree of social interaction or relative contagiousness of consumption in sector k (or

variety k of a consumption good). We normalize this function to integrate to unity,

∫
φ(k)dk = 1 (3)

Consider an agent j, who is still “susceptible”: we denote this agent therefore with “s” rather than

j. This agent is consuming the bundle (cstk)k∈[0,1] at date t. Symmetrically, let (citk)k∈[0,1] denote the

consumption bundle of infected people. Extending ERT, we assume that the probability τst for an agent

of type s to become infected depends on his own consumption bundle, on the total mass of infected

people and their consumption choices, and the degree φ(k) to which infection can be spread per unit of

consumption in sector k,

τt = πsIt

∫
φ(k)cstkc

i
tkdk + πaIt, (4)

where πs is a parameter for the social-interaction infection risk. For the robustness exercise later on, we

have also included the autonomous infection risk parameter πa. With (4), the total number of newly

3Different from ERT, we do not feature a tax-like general consumption discouragement and thus no government transfers.
We also abstract from capital and thus from intertemporal savings decisions, at they do.
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infected people is given by

Tt = τtSt (5)

The dynamics of the four groups now evolves as in a standard SIR epidemiological model,

St+1 = St − Tt (6)

It+1 = It + Tt − (πr + πd)It (7)

Rt+1 = Rt + πrIt (8)

Dt+1 = Dt + πdIt (9)

Popt+1 = Popt −Dt (10)

where πr is the recovery rate and πd is the death rate, and where Popt denotes the mass of the total

population at date t. As in ERT, we assume that the epidemic starts from initial conditions I0 = ε and

S0 = 1− ε, as well as R0 = D0 = 0.

2.3 Choices

We proceed to analyze the choices of the individuals.

Susceptible people: Denote as Ust (U it ) the lifetime utility, from period t on, of a currently susceptible

(infected) individual. As in ERT, the lifetime utility Ust follows the recursion

Ust = u(cst , n
s
t ) + β[(1− τt)Ust+1 + τtU

i
t+1] (11)

where the probability τt is given in equation (4) and depends on the choice of the consumption bundle

(cstk)k∈[0,1]. An s-person maximizes the right hand side of (11) subject to the budget constraint (2) and

the infection probability constraint (4), by choosing labor nst , the consumption bundle (cstk)k∈[0,1] and

the infection probability τt.

The first-order condition for consumption of cstk is

u1(cst , n
s
t ) ·
(
cst
cstk

)1/η

= λsbt + λτtπsItφ(k)citk (12)

where λsbt and λτt are the Lagrange multipliers associated with the constraints (2) and (4). This equation
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can be rewritten as

u1(cst , n
s
t ) ·
(
cst
cstk

)1/η

= λsbt + νtφ(k)citk (13)

where

νt = πsItλτt (14)

Equation (13) reveals, that the risk of becoming infected induces an additional goods-specific component,

scaled with the aggregate multiplicator νt, compared to the usual first order conditions for Dixit-Stiglitz

consumption aggregators (at constant prices across goods). In the absence of the impact of consumption

on infection λrt = νt = 0 and there is no consumption heterogeneity across sectors, cstk = cst for all k, as

in the standard model. In the presence of this effect, then susceptible households shift their consumption

to sectors with low risk of infection (i.e. those with a low φ(k)citk).

Taking the consumption profile of infected households (citk) as given, by choosing her consumption

portfolio a susceptible individual effectively chooses her infection probability τt. As in ERT, the first-order

condition for τt reads as

β(Ust+1 − U it+1) = λτt (15)

The first-order condition with respect to labor is completely standard and reads as

u2(cst , n
s
t ) +Aλsbt = 0 (16)

Note that we have excluded the workplace infection, in contrast to ERT. We examine this possibility in

subsection 3.3 below. With the chosen utility function, this first order condition simplifies to:

θnst = Aλsbt (17)

Infected people and recovered people: As in ERT, the lifetime utility of an infected person is

U it = u(cit, n
i
t) + β[(1− πr − πd)U it+1 + πrU

r
t+1 + πd × 0] (18)
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Taking first order conditions with respect to the consumption choices and labor results in

u1(cst , n
s
t ) ·
(
cit
citk

)1/η

= λibt, (19)

where λibt is the Lagrange multiplier on (2) for an infected person. This is the usual Dixit-Stiglitz CES

first order condition at constant prices, with solution

citk ≡ cit (20)

That is, as long as η ∈ (0,∞), infected individuals find it optimal to spread their consumption evenly

across sectors, given that all sector goods have the same price, are imperfect substitutes, and differential

infection probabilities across sectors are irrelevant for already infected individuals. Exploiting this result

and the specific form of the period utility function (which implies u1(c, n) = 1/c) in equation (19) yields

1/cit = λibt. For labor, we obtain the standard first order condition

θnit = Aλibt =
A

cit
(21)

Finally, exploiting the budget constraint (2), we arrive at the equilibrium allocations for infected people

given by

nit =
1√
θ
, cit =

A√
θ

(22)

Likewise, the lifetime utility for a recovered person is

Urt = u(crt , n
r
t ) + βUrt+1 (23)

Given our assumptions, the optimal decision for both the i group and r group is the same4: we will

therefore use cit, c
i
t,k, nit and λibt to also denote the choices of recovered individuals.

4Note here that we implicitly assume that infected people will be fully at work. One might alternatively wish to assume
that only a fraction of them are at work instead. Given our assumptions about excluding infections in the work place, this
does not affect the infection rate via that channel. However, lowering the amount of income of infected people lowers their
consumption and thus lowers their ability to infect others in the consumption market. We do not wish to emphasize this
channel, though: in a somewhat richer model, people will have a buffer stock of savings, and an infected person would then
draw on these savings to finance consumption rather than respond to the temporary decline in labor income. Alternatively,
income may fall considerably less in practice than the model would otherwise imply here, due to various social insurance
policies.
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2.4 Equilibrium Characterization

In equilibrium, each individual solves her or his maximization problem, and the labor and goods market

has to clear in every period. Let ntk be total labor employed in sector k. The market clearing conditions

then read as:

Stc
s
tk + (It +Rt)c

i
tk = Antk (24)∫

ntkdk = Stn
s
t + (It +Rt)n

i
t (25)

Given the solution to the problem of infected and recovered people, this can be simplified to

Stc
s
tk + (It +Rt)

A√
θ

= Antk∫
ntkdk = Stn

s
t + (It +Rt)

1√
θ

The equations can be simplified further to a set of aggregate variables as well as an equation determining

the sectoral allocation, see appendix section B.

3 Theoretical Results

3.1 The Value of a Statistical Life

The calculations above allow us to calculate the implied value of a statistical life or VSL, using the

following thought experiment. Suppose that there is no epidemic, but that an agent may be exposed to

some small probability δ > 0 of not surviving to the next period. How much would current consumption

have to be increased, in order to compensate the agent for this additional risk? That is, when would the

agent be indifferent between a riskless scenario and the scenario of taking this risk plus the compensation

per increassed current consumption?

Without the epidemic, the consumption of all agents is given by (22) or

c∗ =
A√
θ

and n∗ =
1√
θ
,

implying current utility and lifetime utility

u∗ = log

(
A√
θ

)
− 1

2
and U∗ =

u∗

1− β
u∗
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In the riskless scenario, the agent receives lifetime utility

U∗ = u∗ + βU∗

In the risky scenario, the agent receives expected lifetime utility

log

(
eγ

A√
θ

)
− 1

2
+ (1− δ)βU∗

where γ is the compensating increase of current consumption, expressed in percent (and divided by 100).

Equating these two expressions, solving for γ and with the value of a statistical life expressed as the

percent increase in the consumption of one period required to compensate for the a one percent increase

in the death probability,

VSL :=
γ

δ
, (26)

we find

VSL =
β

1− β

(
log

(
A√
θ

)
− 1

2

)
(27)

One now needs to keep in mind that the length of period matters: that percentage increase would need

to be four times as large, when calculated for weekly rather than monthly consumption, for example. To

calculate the actual value of a statistical life in Dollar, say, one therefore needs to multiply VSL with the

Dollar amount of consumption of one period.

With the epidemic as described in the model, one can thus think of susceptible agents to think

about reducing the current consumption aggregate by VSL percent, if this allows them to increase their

survival chances by one perecent for next period: the larger VSL, the more the agent is willing to endure

a reduction in consumption. It is this trade-off that gives rise to the implied consumption dynamics in

our model. Equation (27) shows, that these calculations regarding the value of a statistical value of life

depend on the preference and productivity parameters via β as well as the ratio A/
√
θ or steady state

consumption c∗. Furthermore, (27) shows, that this value can be negative in principle, if A/
√
θ is smaller

than exp(0.5) ≈ 1.65. We will avoid that in our parameterization, as it would imply a desire for agents

to die.
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3.2 Two extreme values of the elasticity of substitution η

It is instructive to consider extreme values for the elasticity of substitution η. The first extreme is an

elasticity of substitution of zero such that the consumption aggregator is of the Leontieff form.

Proposition 1. Suppose that η = 0, i.e. that the consumption aggregation in (1) is Leontieff. In that

case, the multisector economy is equivalent to a multisector economy with a φ-function, which is constant

and equal to 1,

Proof. With Leontieff consumption aggregation, consumption is sector independent, cjtk ≡ c
j
t . Equations

(4) and (5) now become

τt = πsIt

∫
φ(k)cstc

i
tdk = πsItc

s
tc
i
t

∫
φ(k)dk = πsItc

s
tc
i
t (28)

and

Tt = πsStIt

∫
φ(k)cstkc

i
tkdk = πsStItc

s
tc
i
t (29)

Equations (28) and (29) furthermore show, that the Leontieff version is equivalent to the one-sector

economy in ERT. The other extreme is the case where goods are perfect substitutes.

Proposition 2. Suppose that η → ∞, i.e. that the sector-level consumption goods in (1) are perfect

substitutes in the limit, Let k = supk{k | φ(k) = φ(0)}. Assume that k > 0, i.e. that there is a nonzero

mass of sectors with the lowest level of infection interaction. Suppose that I0 > 0. Then there is a limit

consumption cjtk for j ∈ {s, i, r} as η →∞, satisfying

cstk =

 cst/k for k < k

0 for k > k
(30)

and

cjtk ≡ c
j
t for j ∈ {i, r} (31)

Equations (4) and (5) are replaced by

τt = πsφ(0)Itc
s
tc
i
t (32)
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and

Tt = πsφ(0)StItc
s
tc
i
t (33)

That is, susceptible individuals only consume in the lowest infection-prone sectors with φ(k) = φ(0),

and infected (as well as recovered) individuals consume uniformly across all sectors.

Proof. Equation (31) is just equation (20), which also holds for recovered agents: it will therefore also

hold, when taking5 the limit η →∞. Equation (30) follows from (14) together with (1), taking η →∞.

Define the consumption distribution of type j ∈ {s, i, r} as κjt (k) = cjtk/c
j
t and note that

∫
κjt (k)dk = 1 (34)

and that

κjt (k) ≥ 0, all k (35)

Rewrite (4) and (5) as

τt = πsItc
s
tc
i
t

∫
φ(k)κst (k)κit(k)dk (36)

Therefore and analogously to ERT, the total number of newly infected people is given by

Tt = πsStIt

∫
φ(k)κst (k)κit(k)dk (37)

Equations (32) and (33) now follow from observing that κit(k) ≡ 1 and κst (k) = 1/k for k ∈ [0, k] and

zero elsewhere as well as noting that φ(k) = φ(0) for k ∈ [0, k].

The result of this proposition is depicted in figure 3. Equations (32) and (33) also show, that the

limit is equivalent to the one-sector economy in ERT, with πs replaced by πsφ(0). Infection only takes

place in the sector with lowest infection hazard, thus introducing the extra factor φ(0). The size of the

sector, however, does not enter. With a smaller size of that sector and with equal distribution of infected

agents across all sectors, susceptible agents meet a smaller fraction of infected agents in that sector on

the one hand, a mitigating force. On the other hand, the consumption activity of susceptible agents

in these sectors rises, an enhancing force. These two exactly cancel. Given that the size of the sector

5Note that it does not necessarily hold at the limit, as infected and recovered agents there are indifferent as to which
goods to consume
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Figure 3: When η →∞.

with lowest infection hazard does not matter at both extreme ends given in propositions 1 and 2, one

might conjecture that it is never relevant. However, numerical simulations indicate, that larger rates of

infection occur if that sector is smaller, for substitution elasticies 0 < η <∞.

Proposition 2 above exploits the fact that infected agents wish to spread their consumption equally

across all sectors for any finite value of η. At the limit η = ∞, infected agents are entirely indifferent,

though. At the one extreme, they might consume rather large portions of the low-k goods. At the other

extreme, they stick to each other in the high-infection-risk segments, and not consume the low-k-goods

at all. In that latter case, the infection probabilities become zero and the spread of the disease is stopped

entirely. The following proposition provides the resulting range for the infection probabilities.

Proposition 3. Suppose that η = ∞, i.e. that the sector-level consumption goods in (1) are perfect

substitutes. Let µt be any function of time satisfying

0 ≤ µt ≤ µ̄

where µ̄ is defined as

µ̄ =
1∫
1

φ(k)dk
(38)

and note that it satisfies

φ(0) ≤ µ̄ ≤ 1 (39)
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Then there is an equilibrium with equations (4) and (5) replaced by

τt = πsµtItc
s
tc
i
t (40)

and

Tt = πsµtStItc
s
tc
i
t (41)

Proof. We first show (39). For the lower bound, note that

∫
1

φ(k)
≤
∫

1

φ(0)
=

1

φ(0)

The upper bound follows from Jensen’s inequality and (3). We next shall show, that there is an equilib-

rium, when µt equals one of the two bounds. Given the consumption distribution function κit, note that

the problem of the susceptible agents is to choose their own consumption distribution function κst so as

to minimize (36), subject to the constraints (34) and (35). The Kuhn-Tucker first order condition imply

that κst (k) = 0, unless

k ∈ {k | φ(k)κit(k) = minφ(k)κit(k)}

For µt = 0, let infected agents consume zero, κit(k) = 0 for all k in some subset K of [0, 1]. In that case

and per the argument just provided, susceptible people choose κst (k) > 0 only if k ∈ K. Conversely, the

worst case scenario in terms of infection arises, if φ(k)κit(k) is constant. Given (34), this yields

κit(k) =
µ̄

φ(k)
(42)

Given this κit function, susceptible agents are now indifferent in their consumption choice. Any κst

function satisfying (34) and (35) then results in

∫
κstφ(k)κit(k)dk = µ̄

and thus (40) and (41) at µt = µ̄, i.e. the upper bound. Finally, let 0 < µt < µ̄ and let λ = µt/µ̄. Let K

be a measurable subset of [0, 1] with mass strictly between 0 and 1. Set

κit(k) =

 λ µ̄
φ(k) , for k ∈ K

λ̃ µ̄
φ(k) , for k ∈ [0, 1]\K

17



where λ̃ is chosen such that (34) holds. Then, susceptible agents will choose κst (k) = 0 for all k ∈ [0, 1]\K,

are indifferent between k ∈ K, and (40) and (41) hold true for the chosen µt.

Best case scenario:

k1k

φ

ci

cs

Worst case scenario:

k1k

φ

ci

cs

Figure 4: When η =∞.

The result of this proposition is depicted in figure 4. The top graph depicts the best-case scenario,

when susceptible and infected agents consume entirely different bundles of goods. The bottom graph

depicts the worst-case scenario, when φ(k)ˆ̧i(k) is constant: in that case, a constant cs(k) is the best

solution for susceptible agents under these circumstances. That bottom graph and the proposition show,

that the perfect substitutability might be nearly as bad as the Leontieff case, if infected people behave

particularly badly and distribute their consumption according to (42). Equations (40) and (41) are

then the same equations as in the ERT model with πs replaced by πsµ̄. On the other hand, perfect
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substitutability can also result in the most benign scenario of a zero spread of consumption, if infected

and susceptible people simply consume different goods.

There are fascinating policy lessons in here. Given that infected people will end up seeking services

and consumption, it might be best to encourage them to seek out those types, where the degree of

interaction is high, rather than forcing all agents, including the infected agents, into the low infection

transmission segments. The model here shows that this can have dramatic consequences for the spread

of the disease.

3.3 Infections in the Labor Market

Thus far we have assumed that infections can take place when acquiring consumption goods. We could

have similarly allowed for heterogeneity in labor and assumed that it is at work in the labor market where

individuals face the risk of contracting the virus. We explore this possibility in this section, offering two

alternative approaches, and shall show that the formal analysis is conceptually similar and, for the first

approach, actually equivalent to the model analyzed above. In economic terms and interpretation, the

key distinction is arguably less in the formal differences between both versions of the model, but rather

in the empirically plausible choice for the elasticity of substitution η: while it may be possible to easily

substitute between different types of similar consumption goods (“Pizza at home” versus “Pizza in a

restaurant”), the same may not be true for work (restaurants will still have to produce the to-be-delivered

pizza in the restaurant kitchen, rather than having their workers stay at home and produce in their own

kitchens). Our results for the lower elasticity of substitution η = 3 may thus be more appropriate for the

analysis of infection-at-the-work-place. In the extreme without substitution possibilities, we are back at

the homogeneous sector case.

As for the formal analysis, maintain the assumption that the period utility function is given by

u(c, n) = log(c)− θn
2

2
(43)

but now assume that consumption c is a homogeneous good, while household labor n is a composite of

differentiated sector-specific labor nk, k ∈ [0, 1]. For the first, production-based approach to aggregation,

assume that labor supplied by the household to the market is a CES composite of sector-specific labor,

i.e. that n =
∫
nkdk as far as preferences are concerned, but that the budget constraint reads

c = A

(∫
n

1−(1/α)
k dk

)α/(α−1

(44)

Assume now, that infections occur in the labor market instead of per joint consumption, i.e. assume
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that the probability of a susceptible individual to become infected is given by

τt = π̃sIt

∫
φ(k)nitkn

s
tkdk + πaIt (45)

In Appendix C we establish the following result.

Proposition 4. Suppose that π̃s = A2πs and that α = η. In that case, the production-based labor ag-

gregation with infection in the labor market is equivalent to the consumption-infection economy described

above, i.e. all aggregates remain the same, while nstk/n
s
t = cstk/c

s
t , when comparing the ratio of sector-

specific labor to the labor aggregate in the labor-market-infection economy to the ratio of sector-specific

constumption to the consumption aggregate in the consumption-infection economy.

For this formal equivalence, it is important that the aggregation (44) takes place at the household level

and not at the firm level, i.e. in firms hiring labor from different households. The latter would provide

an interesting alternative environment for studying the sectoral shift issues raised here, but requires

additional restrictions to preclude complete separation of infected and susceptible agents in equilibrium.

The household-level labor aggregation described above may be be hard to envision as an environment

for sector-specific contagion risk. We therefore offer a second, preference-based approach. For that, think

of the household as composed of individual workers, each specialized to work in sector k, and that total

household leisure, described by ` = f(n) for some strictly decreasing and differentiable function6 f is a

CES-aggregate of worker-specific leisure,

f(n) =

(∫
f(nk)1−1/αdk

)α/(α−1)

(46)

for some elasticity of substitution α ≥ 0. The household budget constraint is c = A
∫
nkdk. The proba-

bility of infection is given by (45). This economy shares the the same basic forces as the heterogeneous

consumption sector economy, although its analysis it is not exactly equivalent. In Appendix C we demon-

strate this more formally. The remarks here are simply meant to show that the mechanisms in both types

of labor-infection-based models are rather similar to our baseline consumption-based-infection economy

indeed. We therefore skip a full quantitative analysis and do not to integrate this feature into the ensuing

analysis.

6Useful specifications are f(n) = L̄− n for some time endowment L̄ or f(n) = 1/n.
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4 Social Planning Problem

It is instructive to compare our results to that of a social planner with the ability to test individuals,

i.e. with full knowledge of who is susceptible, infected or recovered. However, in the same way the

agents in our model the planner cannot separate the infected from the susceptible (and recovered), when

they consume (that is, the planner cannot change the consumption technology). Therefore, as in the

decentralized economy, the spread of the disease while consuming can at best be mitigated by allocating

consumers to low-infectious sectors. The social planner maximizes date-0 aggregate social welfare W0,

where

W0 =

∞∑
t=0

βt
[
Stu (cst , n

s
t ) + Itu

(
cit, n

i
t

)
+Rtu (crt , n

r
t )
]

subject to the following constraints, and with the respective Lagrangian multipliers, after substituting

out the infection risk for susceptible people, τt, and the number of newly infected people, Tt:

µf,t :
∫
Stc

s
tk + Itc

i
tk +Rtc

r
tkdk = A

(
Stn

s
t + Itn

i
t +Rtn

r
t

)
(47)

µS,t : St = St−1 − It + (1− πr − πd) It−1 (48)

µI,t : It = πsSt−1It−1

∫
φ(k)cst−1,kc

i
t−1,kdk + (1− πr − πd) It−1 (49)

µR,t : Rt = Rt−1 + πrIt−1 (50)

The social planner takes S0, I0 and R0 as given. It chooses the time paths of consumptions for susceptible,

infected and recovered people cxkt for x ∈ {s, i, r}, the path for labor supply nxt , x ∈ {s, i, r}, and the

paths for the mass of agents in the four groups St, It, and Rt. The first order conditions of the social

planner’s problem are presented in Appendix D.

5 Computation, Calibration and Estimation

5.1 Computational Strategy

The unknowns to be carried around (aside from the sector-specific consumption): Ust , c
s
t , n

s
t , λ

s
bt, νt, τt.

The equations determining these variables are the Bellman equation (11), the budget constraint (2), the

infection constraint (B.8), the share constraint (B.5) replacing the original first order condition with

respect to consumption, the first order condition with respect to labor (16) and the first order condition

with respect to τ (15) combined with (14). One can easily eliminate λbt and nst , using (2) and (16), as

well as eliminate νt with (14) and (15): what remains then is a system in three unknowns Ust , c
s
t , τt and
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three equations, two of which are nonlinear integral equations, that would need to be solved. The way

to proceed is from a distant horizon, and working backwards. Knowing Ust+1 allows one to compute νt

with (14) and (15). Using the two integral equations (having substituted out λsbt and nst ) allows one to

compute cst and τt. From there compute nt with (2) and Ust .

We use Dynare 4.6 to perform the calculations. The economy is hit by an MIT shock in ε, the initial

infected population. A perfect foresight solution with 500 periods is first found by setting πs to a very

small value. At this value, the economy is close to one without a disease outbreak, making it easy for

Dynare to find a solution. We then introduce a small increment to πs, using the solution for the previous

πs value as the initial state. The initial state is updated once a solution at the new πs value is found.

This process is iterated until πs reaches the desired value.

5.2 Calibration and Estimation

We mostly investigate a two-sector economy, where both sectors are of equal size, and sector 1 has

infection intensity φ1 satisfying 0 < φ(k) = φ1 < 1 for k ∈ [0, 0.5]. Given the maintained assumption

that the average φ(k) is equal to one, this implies that φ2 = 2− φ1 for k ∈ (0.5, 1]. We set η = 3 and as

an alternative, η = 10 approaching the perfect substitutes case in Proposition 2. The ERT specification

results for φ1 = φ2 = 1.

We choose the remaining parameters of our model in two steps. In a first step and for the “economics”

side, we choose parameters in line with Eichenbaum et al. (2020) who employ a one-sector version of the

model we use to study the joint dynamics of health and economic activity during the Covid-19 crisis in

the U.S. We summarize the parameters fixed so far in table Table 1. Equation (27) can then be used

to calculate the implied value of a statistical life as VSL = 8298, expressed as the percentage change in

one-week consumption to compensate for a one-percent change in death probability. Weekly per-capita

consumption in Sweden is about 500 U.S. Dollar. Multiplying this with VSL yields about 4 million

U.S. Dollar as the value of a statistical life, expressed in U.S. Dollar. This strikes us in the ball park of

numbers often used in practice. We therefore feel comfortable proceeding with this parameterization7

We next estimate the parameters governing the epidemic dynamics. The epidemiological parameters

in our model, πs, πr, and πd, govern the probabilities of infection, recovery, and death. The initial

infected population determines the timing at which the infection curve soars. The πr and πd parameters

are associated with the number of days for an infected case to recover or die, and the case fatality rate,

7The Dollar VSL may be a bit on the high side, given that we shall think of the agents in our model to be in “mid life”,
when they consider this remaining infinite-horizon VSL, when making their consumption choices.
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Table 1: Economic Parameters.

Parameter Value Description

η 3.000 Elasticity of substitution
θ 1.275× 10−3 Labor supply parameter
A 39.835 Productivity
β 0.961/52 Discount factor
υ1 0.500 Size of the low-interaction sector
υ2 0.500 Size of the high-interaction sector

per the following equations (recall that our model is solved at weekly frequency):

πr = (1− “case fatality rate”)× 7

“days to recover or die”
(51)

and

πd = “case fatality rate”× 7

“days to recover or die”
(52)

where the constant 7 corresponds to weekly statistics. We therefore search over values for the days to

recover or die, the case fatality rate, the initial fraction ε of infected people as well as the infection

risk parameter πs to minimize the root mean square error (RMSE) between the simulated and actual

weekly death counts between February and August 2020. For the number of days to recover or die, we

restrict the range to {4, 7, 10, 14, 21}. For the case fatality rate, the range is {.05%, .1%, .15%, .2%}. For

the initial infected population, the range is {10−5, 5 × 10−5, 10−4, 1.5 × 10−4, 2 × 10−4}. The range of

infection probability πs is restricted to [10−7, 3× 10−6] with steps of 10−8. The grid search is conducted

for values of φ1 from φ1 = 0.1 to φ1 = 1 with an increment of 0.1. The parameter values producing

the best-fit weekly death dynamics for each φ1 value is presented in Table 2. Given these best-fitting

parameters, we calculate the values of πr and πd for our model. We also calculate the implied initial

replication number R0, i.e. the number of new infections per number of infected individuals at steady

state consumption levels

R0 =
πs

A2

θ + πa

πr + πd
(53)

The results is contained in Table 2. Given these parameters, we pick φ1 = 0.2 for our benchmark

calibration since it minimizes the RMSE between the model and the data. Note that at this value for

φ1 = 0.2, the model implies a relatively high initial R0.

Note that the favored parameterizations for all models imply case fatality rates below 0.2 percent.

In our dynamic calculations below, we furthermore find a limit of less than 800 death per million for
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Table 2: Results from grid search

Model φ1 πa
πs Days to recover Case fatality rate Initial infection RMSE

πr πd R0×10−6 or die (per cent) ε (×10−4)

SIR - 2.2 0 3.8 .16 1.50E-03 8.49 1.529 .291 1.20

KUX

.1 - 2.04 10 .10 5.00E-05 4.32 .699 .001 3.63

.2 - 1.82 10 .10 1.00E-04 3.95 .699 .001 3.24

.3 - 2.14 7 .10 5.00E-05 3.96 .999 .001 2.66

.4 - 1.86 7 .10 1.50E-04 4.00 .999 .001 2.31

.5 - 2.54 4 .15 5.00E-05 4.70 1.747 .003 1.81

.6 - 2.46 4 .15 5.00E-05 4.30 1.747 .003 1.75

.7 - 2.30 4 .15 1.00E-04 3.98 1.747 .003 1.64

.8 - 2.20 4 .15 1.50E-04 4.11 1.747 .003 1.56

.9 - 2.18 4 .15 1.50E-04 4.70 1.747 .003 1.55

ERT 1.0 - 2.16 4 .15 1.50E-04 5.01 1.747 .003 1.54

Sweden, corresponding to this rather low case fatality rates. Here, one ought to keep in mind that the

model does not allow for the possibility of a “second wave” or other time-varying features for the infection

dynamics: thus, the shape of the weekly death dynamics data for Sweden exhibited in figure 2 allows

the model no other conclusion, that Sweden is approaching herd immunity, i.e. is nearing the limit in

the total death toll. Time will tell, whether this prediction will be borne out by future evidence.

6 Results for the Benchmark Economy

We now present our results, starting with the findings for our benchmark economy with two sectors which

was calibrated to the Swedish health data as described above. To clarify the quantitative importance

of our mechanism, we also contrast the results from the benchmark economy to that of a representative

sector economy akin to the one used by ERT where by construction the sectoral reallocation channel

is absent. In this section, in order to facilitate the comparison between both model variants we keep

the health parameters fixed; the only difference is φ1 which takes the value φ1 = 0.2 for our benchmark

economy and φ1 = 1 for the representative sector economy.

Figure 5 displays the number of weekly deaths in the data as well as in the two versions of the model.

It is identical to Figure 2 in the introduction, but replaces the death dynamics implied by the purely

epidemiological SIR model with that predicted by the representative sector economy.

We observe that, as already documented in the introduction, the baseline model with sectoral al-

location captures the death dynamics very well, especially early in the pandemic. As the comparison

with the one-sector economy shows, economic adjustments of private agents are absolutely crucial for

this result. Without private households relocating consumption activity to the less infectious sector, the

disease explodes in April, with weekly deaths close to three times as large as in the sectoral reallocation
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Figure 5: Weekly Deaths: Swedish Data and Models.

model (and the data).8

In Fig. 6 we display the health- and economic dynamic in our benchmark model (blue solid line) and

contrast it with the economy in which our reallocation mechanism is absent since φ ≡ 1 as in ERT (the

doted black line). When the virus breaks out, susceptible households optimally substitute consumption

goods from the high-infection sector with goods from the low-infection sector, while maintaining a rel-

atively stable consumption path. Such a behaviour lowers the risk of being infected from participating

in high-infection activities. As a result, the infection rate is only a fraction of that in a homogeneous-

sector economy. Both the consumption decline and the number of deaths are considerably mitigated.

The cumulative death figures show that the limit will be less than 800 death per million. Once again,

one ought to keep in mind, that the mode does not allow for the possibility of a second wave or other

complicating features.

In Fig. 7, we show the sectoral consumption dynamics underpinning the differences between the two

model variants. As expected, due to households substituting goods from the high-infection sector with

those from the low-infection sector, consumption in the low-infection sector experiences an increase,

mitigating the decline in aggregate consumption, which falls by 15%. Note, however, that consumption

8This is not meant at all as a knock on the the original ERT model, since we estimated the parameters so that our model
fits the health data. In section 7 we will document the disease dynamics implied by the homogeneous sector economy once
we estimate this version of the model.
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Figure 6: Comparison of our baseline model with a homogeneous-sector economy.

of a susceptible household in the model is defined as

cst =

∑
k=1,2

υ
1/η
k (cstk)1−1/η

η/(η−1)

(54)

whereas measured consumption of that same household is given by

cjt =
∑
k=1,2

cjtk. (55)

since prices of all goods are identical. Infected and recovered households optimally spread their consump-

tion equally across sectors, and thus for these groups there is no difference between both consumption

concepts.

By the goods market clearing condition, measured consumption (and thus measured GDP, since we

abstract from investment and capital accumulation) equals aggregate labor input, which is therefore the

relevant model variable for comparison to the empirically observed consumption decline.9 As the lower

right two panels show, measured consumption falls by slightly more than 8%, whereas the same statistic

is more than 25% in the homogeneous sector ERT economy. Thus the reallocation mechanism reduces

9Evidently, as η → ∞, the distinction between model consumption and measured consumption becomes irrelevant (as
it is for the one-sector economy), but for smaller values this difference is quantitatively important.
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Figure 7: Sectoral dynamics.

the peak decline in economic activity by approximately 2/3.

As Fig. 6 also shows, sectoral reallocation significantly slows down the dynamic of the pandemic. As

an unfortunately corollary, it also documents that the economy recovery takes long since it delays the

time until the virus has run its course and herd immunity in society is attained. In the homogeneous

sector economy this state would have been attained in the summer of 2020 already, albeit at the cost of

close to 0.1% of the population having succumbed to the disease.

7 Sensitivity Analysis

7.1 Varying infection risks

Our choice of φ1 = 0.2 implies a much lower risk of infection in the low-infection sector, as compared to

the high-infection sector. This in turn implies the massive reallocation across sectors displayed in Fig. 7

above, and strongly mitigates the decline in overall economic activity, as measured by the aggregate

consumption and output decline in Fig. 6.

To assess the quantitative importance of the spread in infectiousness across sectors as measured by

φ1 we now document results for a lower dispersion of infectiousness across sectors, and choose φ1 = 0.8

We choose this value since, in addition to permitting us to vary significantly the importance of the
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Figure 8: Dynamics with optimised parameters at various values of φ1.

reallocation channel, it implies a shift in economic activities across sectors that accords well with Swedish

disaggregated data on economic activity, as we will document below. A value φ1 = 0.8 implies a

significantly smaller difference across consumption sectors in infection risks, and thus it leads to a weaker

incentive to relocate consumption activity across sectors.

Table 2 demonstrates that once we re-estimate the model, under the new parameter values associated

with φ1 = 0.8 the implied R0 falls to 1.56, relative to a value of 3.24 in our baseline case when φ1 = 0.2.

This is intuitive since now economic forces are weaker in mitigating the pandemic, and in order to fit the

same death dynamics requires health parameters that imply a lower basic reproduction number, relative

to a parameterization in which economic adjustments are strong.

In Fig. 8 we display the health- and economic dynamics in three economies that differ in φ1 ∈

{0.2, 0.8, 1}. It is important to note that for all three versions of the model the parameters have been

re-estimated so as to provide the best fit to the weekly death data for Sweden.10

Compared to the benchmark economy with φ1 = 0.2, less potent reallocation triggers a much larger

decline in aggregate consumption and production. In fact, the reduction of consumption and output

amounts to approximately 20%, and is only moderately smaller than the corresponding fall in the rep-

10Therefore the health dynamics in the first four sub-panels of Fig. 8 differs for the representative sector economy
(φ1 = 1), relative to Fig. 6 which did not re-estimate the parameters, in order to permit the clearest quantification of the
reallocation mechanism.
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resentative sector economy (compare the green dashed line with the black dotted line the the last two

panels of Fig. 8. In addition, since both sectors now co-move much more, the distinction between the

model CES-consumption aggregate and measured consumption is relatively unimportant, in contrast to

the benchmark economy with φ1 = 0.2 where measured consumption declines much less (8%) than the

CES consumption aggregate (15%). As a result of the much larger collapse of economic activity with

φ1 = 0.8 relative to φ1 = 0.2, the infection curve has a lower peak now (see the first panel of Fig. 8.

In Fig. 9 we plot the evolution of sectoral consumption across two sectors, both in the model as well

as in Swedish data. In the data, rather than restricting attention to narrowly defined sectors (such as

restaurants and groceries, as in the introduction), we now use data on all final consumption sectors of

the economy, rank them by their decline in the spring of 2020 relative to December 2019, and group

them into two baskets according to this decline. We then plot the time series of output for both groups,

relative to December 2019. The result is the right panel of Fig. 9. Appendix E contains the details of

how the right panel of Fig. 9 is constructed

We observe that in the data, the consumption sectors that performed relatively well held almost

steady, relative to the level of their activity at the end of 2019.11. In contrast, the sectors performing

badly on average fell by 25% from December 2019 to May 2020, before recovering mildly. The aggregate

consumption decline slightly exceeds 10% in April 2020. The data captures this pattern relatively well,

although in the model for φ1 = 0.8 even the less infectious sector shows a non-negligible decline (4%)

in April and May of 2020, relative to December 2019. The data also show a very mild reduction, but

the decline never amount to more than 2% for that sector in the data. The gap between the two sectors

is also somewhat larger in the model (at the peak decline, ca. 35% in the model v/s 25% in the data).

Of course, as one drives φ1 to one, the gap in the decline of consumption in both sectors coincide, and

one obtains the homogeneous sector economy of ERT, and with it, the massive decline in aggregate

consumption and production in excess of 20%.

7.2 Varying the Substitution Elasticity Across Goods

The second crucial parameter governing the quantitative importance of the sectoral substitution mecha-

nism is the elasticity of substitution across sectors, as measured by η. As we have shown in the theoretical

analysis, as the elasticity of substitution converges to zero, our model approximates the one-sector econ-

omy first studied by ERT. At the other extreme, as η approaches ∞, the substitution channel becomes

maximally potent. Above, we showed that for our baseline parameterization of η = 3, measured con-

sumption declines by about 8 percent, and the CES consumption aggregate by 15%. With a higher

degree of substitution, η = 10, a value often used in New Keynesian models with differentiated goods,

11This aggregation masks nontrivial heterogeneity across more finely defined sectors, of course
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Figure 9: Sectoral dynamics when φ1 = 0.8 vs Swedish data.

the decline in consumption is is cut by about 60%, to 2.5% (measured consumption) and 6% (CES con-

sumption aggregate). The infection curve is considerably flattened as well, compared to the benchmark

case.

The comparison of η = 3 to η = 10 in Fig. 10 shows the importance of the substitution mechanism

between goods: with a higher elasticity of substitution, households are more willing to substitute into

the low-infection-risk sectors. Motivated by our theoretical results, Fig. 10 also contains cases where the

elasticity of substitution is approaching infinity, i.e. η = 100 and η = 1000, the infection curve is not

just flattened, it is reversed: the number of infected people decays on its own, and the disease is stopped

in its tracks. This is consistent with Proposition 2. As Fig. 11 shows, for high values of η individuals

shift close to 100% of their consumption activities to the less infectious sectors as the pandemic starts

to take hold of the economy η = 100, or for the extreme case where η = 1000 this happens so early in

the (would-be) pandemic (with sectoral reallocation complete as soon as a few Covid-19 cases emerge in

the economy) that the disease hardly spreads to the susceptible population.

8 Socially Optimal Allocations

Lastly, we explore the solution to the social planner’s problem described in section 4. Fig. 12 shows the

outcome of the social planner solution (green line) in comparison to our baseline decentralized economy

with η = 3 (blue line) as well as the homogeneous-sector case (black-dotted line).12 The social planner

essentially stops the outbreak dead in its tracks: the number of infected agents declines quickly, and

is barely noticeable within a few weeks after the start of the outbreak. The social planner achieves

12The social planner solution for the homogeneous sector case (not plotted) is practically indistinguishable from the
planner solution for the heterogeneous sector economy: as far as aggregates chosen by a social planner are concerned,
sector heterogeneity plays practically no role.
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Figure 10: Heterogeneous-sector economy: variations in η.

Figure 11: Heterogeneous-sector economy: consumption dynamics.
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Figure 12: Heterogeneous-sector economy: social planning solution.

this outcome by restricting consumption of infected agents in a Draconian manner, thereby hugely

mitigating the infection risk and stopping the infection at the onset. Compared to the competitive

equilibrium outcome, a planner with the power to distinguish between the health status of infected

and susceptible therefore is even more successful in averting the epidemic. However, as we saw above,

private incentives together with substitution possibilities across sectors makes the epidemic much more

benign already, relative to the one-sector economy studied in most of the literature. Thus, the wedge

between equilibrium and socially optimal allocations is much smaller if private households are given more

opportunity to shift activity away from highly infectious sectors. The additional powers afforded to the

social planner are therefore less potent in our economy, relative to a world where private adjustments to

the epidemic are more limited.

Fig. 13 further illustrates how the consumption of infected people is restricted, and how the allocation

depends on the degree of substitutability between the two sectors. In the baseline scenario, the per capita

consumption of an infected household is restricted to less than 17% of its steady state of the non-infectious

competitive equilibrium. Consumption of infected individuals in the highly infectious sector is effectively

driven to zero, especially if the two sectors are highly substitutable (the η = 10 case). Effectively, the

planner insulates with large infection risk from infected individuals. In the benchmark case with lower

elasticity of substitution, η = 3, the social planner does not impose quite as drastic a difference across the
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Figure 13: Per capita consumption of infected people.

sectors (since this would be very costly in terms of lifetime utility of the infected individuals, which the

planner values as well). In the homogeneous sector case, alternatively, the case for η = 0, consumption

in both sectors is the same, as the dotted-black line shows: now, consumption for the infected is reduced

to only 5 percent of the non-infectious steady state. It is in this treatment of the infected, where the

sectoral substitution possibilities matter considerably, since without the ability to insulate the infected

from the susceptible population by other means, the planner finds it optimal to reduce consumption

activity of the infected across the board in order to avoid the outbreak of the epidemic.

One should take the social planner solution with a grain of salt, of course. Presumably, a really

powerful social planner would entirely separate the infected and recovered people from the susceptible

people. If this is technologically feasible, the disease cannot spread any further, and no consumption

decline for the infected is needed. The formulation of our social planner problem precludes this possibility.

In summary, our calculations and this remark shows that the possibility for containing the pandemic

depends crucially on the tools available to the government, and they may involve imposing considerable

hardship on a few (the initially infected) in order to rescue the many.
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9 Conclusion

In this paper, we have analyzed the laissez-faire approach or “Swedish” solution to the covid-19 pandemic.

We built on the macroeconomic-cum-SIR model of Eichenbaum et al. (2020), but departed from their

analysis in that we permit substitution of consumption across sectors with different degrees of infection

probabilities. After presenting theoretical results for the limits of the elasticity of substitution between

sectors, we quantified the model in particular by calibrating our epidemiological parameters to the

Swedish death dynamics.

We found that our model fits that death dynamics substantially better than a plain-vanilla SIR model,

while also providing a reasonably good fit to the overall consumption decline in Sweden. Our analysis

implies case fatality rates below 0.2 percent and a limit of less than 800 death per million for Sweden.

Here, one ought to keep in mind that the model does not allow for the possibility of a “second wave”

or other time-varying features for the infection dynamics: thus, the shape of the weekly death dynamics

data for Sweden exhibited in figure 2 allows the model no other conclusion, that Sweden is approaching

herd immunity, i.e. is nearing the limit in the total death toll. Time will tell, whether this prediction

will be borne out by future evidence.

We found that the decline in economic activity as well as the peak weekly death toll would have

been three times as large compared to our benchmark calibration, when assuming the sectors to be

homogeneous instead. Thus, the sectoral substitution possibility is a powerful force in mitigating the

speed of the pandemic dynamics and the depth of the economic decline.

In the laissez-fare model, agents do not take the externality into account, that their infectious state

and infection risk imposes on others. We therefore juxtaposed our laissez-fare solution to the solution

of a social planner, who knows the health status of agents and can dictate their consumption and

labor choices, but cannot otherwise separate individuals. The social planner would drastically lower

the consumption of infected agents, thereby avoiding the economic decline and the pandemic dynamics

practically entirely.
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A Two-sector simulations

The consumer interaction indicator φ(k) is defined piece-wisely as

φ(k) =


φ1 k ∈ [0, υ)

φ2 k ∈ [υ, 1]

where υ is the size of the sector with lower consumer interactions. For each sector j ∈ {1, 2}, there is

a first-order condition with respect to cxjt, where x ∈ {s, i, r}. The equations for infected and recovered

people are substituted out, because their consumption and labor are constant. The following equations

consist the system delivering the paths of key variables.

υ
1/η
1

1
cst

(
cst
cs1t

)1/η

=
θ

A
nst + πsItλτ,tφ1

A√
θ

(A.1)

υ
1/η
2

1
cst

(
cst
cs2t

)1/η

=
θ

A
nst + πsItλτ,tφ2

A√
θ

(A.2)

cs1t + cs2t = Anst (A.3)

cst =
[
υ

1/η
1 cs1t

1−1/η + υ
1/η
2 cs2t

1−1/η
] η
η−1

(A.4)

λτ,t = −β
(
U it+1 − Ust+1

)
(A.5)

Ust = u (cst , n
s
t ) + β

[
(1− τt)Ust+1 + τtU

i
t+1

]
(A.6)

U it = u
(
ci, ni

)
+ β

[
(1− πd)U it+1 + πrU

r
t+1

]
(A.7)

Urt = u
(
ci, ni

)
+ βUrt+1 (A.8)

τt =
A√
θ
πsIt (φ1c

s
1t + φ2c

s
2t) (A.9)

Tt = τtSt (A.10)

St = 1− It −Rt −Dt (A.11)

Rt = Rt−1 + πrIt−1 (A.12)

Dt = Dt−1 + πdIt−1 (A.13)

It = Tt−1 + (1− πd − πr) It−1 + 1t=1ε (A.14)

Note that the time convention of disease dynamics is modified for implementation in Dynare. An MIT

shock of size ε is added to (A.14) in period 1. The paths of aggregate consumption and labor are given
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by

Ct = Stc
s
t + (It +Rt)

A√
θ

(A.15)

Nt = Stn
s
t + (It +Rt)

1√
θ

(A.16)

B Eliminating cstk

Note that citk = A/
√
θ. Let us reexamine (13) and write it as

(
cst
cstk

)1/η

= xtk (B.1)

where we define

xtk = cst

(
λsbt + νtφ(k)A/

√
θ
)

(B.2)

Rewrite (B.1) as

cstk = x−ηtk c
s
t (B.3)

Thus

(cstk)1−1/η = x1−η
tk (cst )

1−1/η (B.4)

and integrate

∫
(cstk)1−1/ηdk =

∫
x1−η
tk dk × (cst )

1−1/η

Taking this to the power η/(η − 1) finally yields

cst =

(∫
x1−η
tk dk

)η/(η−1)

cst

or the constraint

1 =

(∫
x1−η
tk dk

)η/(η−1)
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This can be simplified to

1 =

∫
x1−η
tk dk (B.5)

or

cst =

(∫ (
λsbt + νtφ(k)A/

√
θ
)1−η

dk

)1/(1−η)

(B.6)

Thus, (4) and (5) can be rewritten as

τt = πsIt

∫
φ(k)xηtkc

s
tA/
√
θdk (B.7)

= πsIt

∫
φ(k)

(
λsbt + νtφ(k)A/

√
θ
)−η

(cst )
1−ηA/

√
θdk (B.8)

and

Tt = πsStIt

∫
φ(k)xηtkc

s
tA/
√
θdk (B.9)

= πsStIt

∫
φ(k)

(
λsbt + νtφ(k)A/

√
θ
)−η

(cst )
1−ηA/

√
θdk (B.10)

C Details for the Heterogeneous Labor Economy

Proof of Proposition 4. To see the similarities and differences between the heterogeneous consumption-

and heterogeneous labor economy more formally, observe that the first order conditions for infected

and recovered agents are unchanged. In particular, we obtain cit = citk ≡ A/
√
θ and nit = nitk = 1/

√
θ,

regardless as to whether consumption or labor is heterogeneous and regardless of the particular approach

taken for labor heterogeneity. It therefore suffices to examine the first order conditions for susceptible

agents.

For the consumption-infection baseline model, the first-order conditions can be summarized by

1

cst

(
cst
cstk

)1/η

− θ

A
nst = πsφkλτt

A√
θ
It (C.1)

while the aggregation constraint and budget constraint are

cst =

(∫
(cstk)

1−1/η
dk

)η/(η−1)

Anst =

∫
cstkdk
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Define nstk = cstk/A and rewrite these two equations equivalently as

cst = A

(∫
(nstk)

1−1/η
dk

)η/(η−1)

(C.2)

nst =

∫
nstkdk (C.3)

Recall that the infection probability is given by equation (4). Substituting out the solution for cit as well

as cstk with Anstk = cstk, it can be restated as

τt = πsIt

∫
φ(k)Anstkdk

A√
θ

+ πaIt, (C.4)

For the production-based heterogeneous-labor model, the first-order conditions can be summarized

by

1

cst

(
nst
nstk

)1/α

− θ

A
nst =

π̃s
A
φkλτt

1√
θ
It (C.5)

while the aggregation constraint and budget constraint are

cst = A

(∫
(nstk)

1−1/α
dk

)α/(α−1)

(C.6)

nst =

∫
nstkdk (C.7)

Recall that the infection probability is given by equation (45), which can be restated as

τt = π̃sIt

∫
φ(k)nstkdk

1√
θ

+ πaIt, (C.8)

For α = η, π̃s = A2πs and nstk/n
s
t = cstk/ct, equations (C.5) becomes (C.1), equations (C.6) become

equations (C.2) and (C.8) becomes (C.4).

For the preference-based heterogeneous-labor formulation, the first-order conditions can be summa-

rized by

1

cst
− θ

A
nst
f ′(nstk)

f ′(nst )

(
f(nst )

f(nstk)

)1/α

=
π̃s
A
φkλτt

1√
θ
It (C.9)

while the aggregation constraint and budget constraint are

cst = A

∫
nstkdk (C.10)

nst =

(∫
(nstk)

1−1/α
dk

)α/(α−1)

(C.11)
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While there is considerable formal similarity, there no longer is a formal equivalence as in proposition 4.

D First Order Conditions of the Social Planner Problem

The social planner’s problem in the main text yields the following first-order conditions:
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E Replicating data

Replicating Figure 1

Navigate to the Statistical Database module of the Statistics Sweden website and use their GUI to

extract all Fixed Price denominated rows from the Monthly Indicator for Household Consump-

tion13. This index details trends in retail trade, wholesale trade, and other service industries, and spans

20 years from January 2000 to July 2020. Transpose and subset this dataframe until only 3 columns

remain: Total Consumption, Restaurants, and Groceries.

Control for seasonality (e.g. Christmas spending spikes) in these 3 columns by following along with

13www.statistikdatabasen.scb.se/pxweb/en/ssd/START HA HA0101 HA0101B/HushKonInd/
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Sax and Eddelbuettel (2018) in their aptly named paper, Seasonal Adjustment by X-13ARIMA-SEATS

in R, which presents a model selection framework for linear regression models with ARIMA errors. This

paper builds upon a SEATS procedure originally developed by Gómez and Maravall (1997) at the Bank

of Spain.

Once deseasonalized, rebase each of the 3 columns so that December 2019 is always equal to 100, by

dividing all the points in each series by the value of said series at 2019M12 and multiplying by 100. The

resulting deseasonalized and rebased dataset gives us a clearer picture of what is happening. Plotting

the last 12 rows of these 3 columns should now flawlessly replicate Figure 1.

Replicating figure 9

Extract two new dataframes from the Statistics Sweden repository: GDP (Production Approach)

by Industrial Classfication14 and Turnover Index for the Service Sector15, denoted respectively

in Constant Prices (SEK Millions) and Volume (Fixed Prices). While GDP (Production Approach)

measures GDP as the sum of the values added by all sectors of the economy, the Turnover Index is a

survey tracking monthly changes in invoice sales. Turnover Index is used an input for national accounts

statistics. Go ahead and deseasonalize/rebase each column in Turnover Index just as in Figure 1.

A “mean response to Covid” for each industry is then constructed, defined as the mean value of the

index for each sector during the first 6 months of 2020. This metric is used to ordinally rank each sector

in the Turnover Index, from those most impacted by Covid (e.g. airlines/hotels) to those least impacted

(e.g. veterinarians, IT services).

Next, filter the GDP (Production Approach) dataframe so that it contains only values for 2019Q1,

2019Q2, 2019Q3, and 2019Q4, then sum these 4 quarters to obtain total GDP for 2019. This nominal

amount for each sector is then divided through by the entire sum for all sectors, so that the weights sum

to one. We have now ascertained the relative size of each sector.

We now wish to link/merge these two dataframes (GDP & Turnover); at first glance this might

seem straightforward as they both rely on NACE (Nomenclature des Activités Économiques dans la

Communauté Européenne) classification codes. However, upon closer inspection, one realizes that the

variables in the two datasets do not match up perfectly; some miscellaneous data cleaning practices and

subjective choices are required to build our own bespoke consumption bundle, a bundle seeking to proxy

for Total Consumption in Figure 1. Many columns are dropped outright because they are contained in

one dataframe but not the other; other columns are dropped because they are superfluous or do not proxy

for consumption. Other columns must be aggregated, for example sectors 94, 95, and 96 in the Turnover

Index are averaged into one new variable dubbed 94-96, because while GDP (Production Approach) does

14www.statistikdatabasen.scb.se/pxweb/en/ssd/START NR NR0103 NR0103A/NR0103ENS2010T06Kv/
15www.statistikdatabasen.scb.se/pxweb/en/ssd/START HA HA0101 HA0101B/DivtjansterM07X/
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not contain any of 94, 95, or 96, it does contain a variable called 94-96. This aggregation is a workaround

that lets us compare the two dataframes. The entire cleaning and linking process is described in detail

in our accompanying R code, and whittles our initial dataframes down from 60+ miscellaneous sectors

down to a core 14 sectors. Depending on the choices you (the replicator) make, your particular dataset

may have roughly more or less than 14 sectors, depending on how you aggregate/drop columns, and how

you choose to define Total Consumption.

Finally, classify all sectors in this newly linked dataframe into those that boomed the most vs.

those that declined the most due to Covid. This is done simply by sorting the dataframe on “mean

response to Covid”, as calculated two paragraphs ago. Add together all the sectors with the highest

mean response until their cumulative sum of GDP contributions gets just over 0.5, and plot the time

series. Congratulations, you have now successfully replicated Figure 2! Should you wish to replicate

Figure 3 (5-sectors) instead, simply set cutoffs at the 0.2, 0.4, 0.6, & 0.8 thresholds, instead of one single

cutoff at 0.5.
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